• Photonics Research
  • Vol. 6, Issue 11, 1084 (2018)
Evgeni A. Bezus1,2,*, Dmitry A. Bykov1,2, and Leonid L. Doskolovich1,2
Author Affiliations
  • 1Image Processing Systems Institute—Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, 151 Molodogvardeyskaya St., Samara 443001, Russia
  • 2Samara National Research University, 34 Moskovskoe Shosse, Samara 443086, Russia
  • show less
    DOI: 10.1364/PRJ.6.001084 Cite this Article Set citation alerts
    Evgeni A. Bezus, Dmitry A. Bykov, Leonid L. Doskolovich, "Bound states in the continuum and high-Q resonances supported by a dielectric ridge on a slab waveguide," Photonics Res. 6, 1084 (2018) Copy Citation Text show less
    References

    [1] H. A. Haus. Waves and Fields in Optoelectronics(1984).

    [2] T. Mossberg. Planar holographic optical processing devices. Opt. Lett., 26, 414-416(2001).

    [3] G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, C. Peroz. Holographic planar lightwave circuit for on-chip spectroscopy. Light Sci. Appl., 3, e203(2014).

    [4] S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, V. Yankov. Digital optical spectrometer-on-chip. Appl. Phys. Lett., 95, 041105(2009).

    [5] C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, V. Yankov. Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications. Opt. Lett., 37, 695-697(2012).

    [6] C. Peroz, A. Goltsov, S. Dhuey, P. Sasorov, B. Harteneck, I. Ivonin, S. Kopyatev, S. Cabrini, S. Babin, V. Yankov. High-resolution spectrometer-on-chip based on digital planar holography. IEEE Photon. J., 3, 888-896(2011).

    [7] X. Ma, M. Li, J. J. He. CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array. IEEE Photon. J., 5, 7101307(2013).

    [8] L. L. Doskolovich, E. A. Bezus, D. A. Bykov. Two-groove narrowband transmission filter integrated into a slab waveguide. Photon. Res., 6, 61-65(2018).

    [9] L. L. Doskolovich, E. A. Bezus, N. V. Golovastikov, D. A. Bykov, V. A. Soifer. Planar two-groove optical differentiator in a slab waveguide. Opt. Express, 25, 22328-22340(2017).

    [10] M. Hammer, A. Hildebrandt, J. Förstner. How planar optical waves can be made to climb dielectric steps. Opt. Lett., 40, 3711-3714(2015).

    [11] M. Hammer, A. Hildebrandt, J. Förstner. Full resonant transmission of semiguided planar waves through slab waveguide steps at oblique incidence. J. Lightwave Technol., 34, 997-1005(2016).

    [12] A. E. Miroshnichenko, S. Flach, Y. S. Kivshar. Fano resonances in nanoscale structures. Rev. Mod. Phys., 82, 2257-2298(2010).

    [13] W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, S. Fan. Progress in 2D photonic crystal Fano resonance photonics. Prog. Quantum Electron., 38, 1-74(2014).

    [14] C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, M. Soljačić. Bound states in the continuum. Nat. Rev. Mater., 1, 16048(2016).

    [15] Z. F. Sadrieva, A. A. Bogdanov. Bound state in the continuum in the one-dimensional photonic crystal slab. J. Phys. Conf. Ser., 741, 012122(2016).

    [16] Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, A. V. Lavrinenko. Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness. ACS Photon., 4, 723-727(2017).

    [17] D. C. Marinica, A. G. Borisov, S. V. Shabanov. Bound states in the continuum in photonics. Phys. Rev. Lett., 100, 183902(2008).

    [18] C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, M. Soljačić. Observation of trapped light within the radiation continuum. Nature, 499, 188-191(2013).

    [19] E. N. Bulgakov, A. F. Sadreev. Bloch bound states in the radiation continuum in a periodic array of dielectric rods. Phys. Rev. A, 90, 053801(2014).

    [20] F. Monticone, A. Alù. Bound states within the radiation continuum in diffraction gratings and the role of leaky modes. New J. Phys., 19, 093011(2017).

    [21] C. Blanchard, J.-P. Hugonin, C. Sauvan. Fano resonances in photonic crystal slabs near optical bound states in the continuum. Phys. Rev. B, 94, 155303(2016).

    [22] S. P. Shipman, S. Venakides. Resonant transmission near nonrobust periodic slab modes. Phys. Rev. E, 71, 026611(2005).

    [23] L. Yuan, Y. Y. Lu. Propagating Bloch modes above the lightline on a periodic array of cylinders. J. Phys. B, 50, 05LT01(2017).

    [24] C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, M. Soljačić. Bloch surface eigenstates within the radiation continuum. Light Sci. Appl., 2, e84(2013).

    [25] E. N. Bulgakov, A. F. Sadreev. Bound states in the continuum in photonic waveguides inspired by defects. Phys. Rev. B, 78, 075105(2008).

    [26] I. V. Timofeev, D. N. Maksimov, A. F. Sadreev. Optical defect mode with tunable Q factor in a one-dimensional anisotropic photonic crystal. Phys. Rev. B, 97, 024308(2018).

    [27] Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, M. Segev. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett., 107, 183901(2011).

    [28] M. I. Molina, A. E. Miroshnichenko, Y. S. Kivshar. Surface bound states in the continuum. Phys. Rev. Lett., 108, 070401(2012).

    [29] S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, Y. S. Kivshar. Compact surface Fano states embedded in the continuum of waveguide arrays. Phys. Rev. Lett., 111, 240403(2013).

    [30] C. L. Zou, J. M. Cui, F. W. Sun, X. Xiong, X. B. Zou, Z. F. Han, G. C. Guo. Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators. Laser Photon. Rev., 9, 114-119(2015).

    [31] E. A. Bezus, L. L. Doskolovich, N. L. Kazanskiy. Low-scattering surface plasmon refraction with isotropic materials. Opt. Express, 22, 13547-13554(2014).

    [32] G. Lifante. Integrated Photonics: Fundamentals(2003).

    [33] R. D. Kekatpure, A. C. Hryciw, E. S. Barnard, M. L. Brongersma. Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator. Opt. Express, 17, 24112-24129(2009).

    [34] M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A, 12, 1068-1076(1995).

    [35] L. Li. Use of Fourier series in the analysis of discontinuous periodic structures. J. Opt. Soc. Am. A, 13, 1870-1876(1996).

    [36] E. Silberstein, P. Lalanne, J.-P. Hugonin, Q. Cao. Use of grating theories in integrated optics. J. Opt. Soc. Am. A, 18, 2865-2875(2001).

    [37] J. P. Hugonin, P. Lalanne. Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization. J. Opt. Soc. Am. A, 22, 1844-1849(2005).

    [38] C. R. Pollock. Fundamentals of Optoelectronics(2003).

    [39] S.-T. Peng, A. A. Oliner. Guidance and leakage properties of a class of open dielectric waveguides: part I — mathematical formulations. IEEE Trans. Microw. Theory Tech., 29, 843-855(1981).

    [40] A. A. Oliner, S.-T. Peng, T. I. Hsu, A. Sanchez. Guidance and leakage properties of a class of open dielectric waveguides: part II—new physical effects. IEEE Trans. Microw. Theory Tech., 29, 855-869(1981).

    [41] D. A. Bykov, L. L. Doskolovich. Numerical methods for calculating poles of the scattering matrix with applications in grating theory. J. Lightwave Technol., 31, 793-801(2013).

    [42] D. A. Bykov, L. L. Doskolovich. On the use of the Fourier modal method for calculation of localized eigen modes of integrated optical resonators. Comput. Opt., 39, 663-673(2015).

    [43] N. A. Gippius, S. G. Tikhodeev. Application of the scattering matrix method for calculating the optical properties of metamaterials. Phys. Usp., 52, 967-971(2009).

    [44] V. Karagodsky, C. Chase, C. J. Chang-Hasnain. Matrix Fabry–Perot resonance mechanism in high-contrast gratings. Opt. Lett., 36, 1704-1706(2011).

    [45] R. Orta, A. Tibaldi, P. Debernardi. Bimodal resonance phenomena — part II: high/low-contrast grating resonators. IEEE J. Quantum Electron., 52, 6600409(2016).

    [46] R. Orta, A. Tibaldi, P. Debernardi. Bimodal resonance phenomena — part I: generalized Fabry–Pérot interferometers. IEEE J. Quantum Electron., 52, 6100508(2016).

    CLP Journals

    [1] Leonid L. Doskolovich, Evgeni A. Bezus, Dmitry A. Bykov, "Integrated flat-top reflection filters operating near bound states in the continuum," Photonics Res. 7, 1314 (2019)

    [2] Zarko Sakotic, Alex Krasnok, Andrea Alú, Nikolina Jankovic, "Topological scattering singularities and embedded eigenstates for polarization control and sensing applications," Photonics Res. 9, 1310 (2021)

    Evgeni A. Bezus, Dmitry A. Bykov, Leonid L. Doskolovich, "Bound states in the continuum and high-Q resonances supported by a dielectric ridge on a slab waveguide," Photonics Res. 6, 1084 (2018)
    Download Citation