• Photonics Research
  • Vol. 6, Issue 11, 1084 (2018)
Evgeni A. Bezus1、2、*, Dmitry A. Bykov1、2, and Leonid L. Doskolovich1、2
Author Affiliations
  • 1Image Processing Systems Institute—Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, 151 Molodogvardeyskaya St., Samara 443001, Russia
  • 2Samara National Research University, 34 Moskovskoe Shosse, Samara 443086, Russia
  • show less
    DOI: 10.1364/PRJ.6.001084 Cite this Article Set citation alerts
    Evgeni A. Bezus, Dmitry A. Bykov, Leonid L. Doskolovich. Bound states in the continuum and high-Q resonances supported by a dielectric ridge on a slab waveguide[J]. Photonics Research, 2018, 6(11): 1084 Copy Citation Text show less
    References

    [1] H. A. Haus. Waves and Fields in Optoelectronics(1984).

    [2] T. Mossberg. Planar holographic optical processing devices. Opt. Lett., 26, 414-416(2001).

    [3] G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, C. Peroz. Holographic planar lightwave circuit for on-chip spectroscopy. Light Sci. Appl., 3, e203(2014).

    [4] S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, V. Yankov. Digital optical spectrometer-on-chip. Appl. Phys. Lett., 95, 041105(2009).

    [5] C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, V. Yankov. Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications. Opt. Lett., 37, 695-697(2012).

    [6] C. Peroz, A. Goltsov, S. Dhuey, P. Sasorov, B. Harteneck, I. Ivonin, S. Kopyatev, S. Cabrini, S. Babin, V. Yankov. High-resolution spectrometer-on-chip based on digital planar holography. IEEE Photon. J., 3, 888-896(2011).

    [7] X. Ma, M. Li, J. J. He. CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array. IEEE Photon. J., 5, 7101307(2013).

    [8] L. L. Doskolovich, E. A. Bezus, D. A. Bykov. Two-groove narrowband transmission filter integrated into a slab waveguide. Photon. Res., 6, 61-65(2018).

    [9] L. L. Doskolovich, E. A. Bezus, N. V. Golovastikov, D. A. Bykov, V. A. Soifer. Planar two-groove optical differentiator in a slab waveguide. Opt. Express, 25, 22328-22340(2017).

    [10] M. Hammer, A. Hildebrandt, J. Förstner. How planar optical waves can be made to climb dielectric steps. Opt. Lett., 40, 3711-3714(2015).

    [11] M. Hammer, A. Hildebrandt, J. Förstner. Full resonant transmission of semiguided planar waves through slab waveguide steps at oblique incidence. J. Lightwave Technol., 34, 997-1005(2016).

    [12] A. E. Miroshnichenko, S. Flach, Y. S. Kivshar. Fano resonances in nanoscale structures. Rev. Mod. Phys., 82, 2257-2298(2010).

    [13] W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, S. Fan. Progress in 2D photonic crystal Fano resonance photonics. Prog. Quantum Electron., 38, 1-74(2014).

    [14] C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, M. Soljačić. Bound states in the continuum. Nat. Rev. Mater., 1, 16048(2016).

    [15] Z. F. Sadrieva, A. A. Bogdanov. Bound state in the continuum in the one-dimensional photonic crystal slab. J. Phys. Conf. Ser., 741, 012122(2016).

    [16] Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, A. V. Lavrinenko. Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness. ACS Photon., 4, 723-727(2017).

    [17] D. C. Marinica, A. G. Borisov, S. V. Shabanov. Bound states in the continuum in photonics. Phys. Rev. Lett., 100, 183902(2008).

    [18] C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, M. Soljačić. Observation of trapped light within the radiation continuum. Nature, 499, 188-191(2013).

    [19] E. N. Bulgakov, A. F. Sadreev. Bloch bound states in the radiation continuum in a periodic array of dielectric rods. Phys. Rev. A, 90, 053801(2014).

    [20] F. Monticone, A. Alù. Bound states within the radiation continuum in diffraction gratings and the role of leaky modes. New J. Phys., 19, 093011(2017).

    [21] C. Blanchard, J.-P. Hugonin, C. Sauvan. Fano resonances in photonic crystal slabs near optical bound states in the continuum. Phys. Rev. B, 94, 155303(2016).

    [22] S. P. Shipman, S. Venakides. Resonant transmission near nonrobust periodic slab modes. Phys. Rev. E, 71, 026611(2005).

    [23] L. Yuan, Y. Y. Lu. Propagating Bloch modes above the lightline on a periodic array of cylinders. J. Phys. B, 50, 05LT01(2017).

    [24] C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, M. Soljačić. Bloch surface eigenstates within the radiation continuum. Light Sci. Appl., 2, e84(2013).

    [25] E. N. Bulgakov, A. F. Sadreev. Bound states in the continuum in photonic waveguides inspired by defects. Phys. Rev. B, 78, 075105(2008).

    [26] I. V. Timofeev, D. N. Maksimov, A. F. Sadreev. Optical defect mode with tunable Q factor in a one-dimensional anisotropic photonic crystal. Phys. Rev. B, 97, 024308(2018).

    [27] Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, M. Segev. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett., 107, 183901(2011).

    [28] M. I. Molina, A. E. Miroshnichenko, Y. S. Kivshar. Surface bound states in the continuum. Phys. Rev. Lett., 108, 070401(2012).

    [29] S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, Y. S. Kivshar. Compact surface Fano states embedded in the continuum of waveguide arrays. Phys. Rev. Lett., 111, 240403(2013).

    [30] C. L. Zou, J. M. Cui, F. W. Sun, X. Xiong, X. B. Zou, Z. F. Han, G. C. Guo. Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators. Laser Photon. Rev., 9, 114-119(2015).

    [31] E. A. Bezus, L. L. Doskolovich, N. L. Kazanskiy. Low-scattering surface plasmon refraction with isotropic materials. Opt. Express, 22, 13547-13554(2014).

    [32] G. Lifante. Integrated Photonics: Fundamentals(2003).

    [33] R. D. Kekatpure, A. C. Hryciw, E. S. Barnard, M. L. Brongersma. Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator. Opt. Express, 17, 24112-24129(2009).

    [34] M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A, 12, 1068-1076(1995).

    [35] L. Li. Use of Fourier series in the analysis of discontinuous periodic structures. J. Opt. Soc. Am. A, 13, 1870-1876(1996).

    [36] E. Silberstein, P. Lalanne, J.-P. Hugonin, Q. Cao. Use of grating theories in integrated optics. J. Opt. Soc. Am. A, 18, 2865-2875(2001).

    [37] J. P. Hugonin, P. Lalanne. Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization. J. Opt. Soc. Am. A, 22, 1844-1849(2005).

    [38] C. R. Pollock. Fundamentals of Optoelectronics(2003).

    [39] S.-T. Peng, A. A. Oliner. Guidance and leakage properties of a class of open dielectric waveguides: part I — mathematical formulations. IEEE Trans. Microw. Theory Tech., 29, 843-855(1981).

    [40] A. A. Oliner, S.-T. Peng, T. I. Hsu, A. Sanchez. Guidance and leakage properties of a class of open dielectric waveguides: part II—new physical effects. IEEE Trans. Microw. Theory Tech., 29, 855-869(1981).

    [41] D. A. Bykov, L. L. Doskolovich. Numerical methods for calculating poles of the scattering matrix with applications in grating theory. J. Lightwave Technol., 31, 793-801(2013).

    [42] D. A. Bykov, L. L. Doskolovich. On the use of the Fourier modal method for calculation of localized eigen modes of integrated optical resonators. Comput. Opt., 39, 663-673(2015).

    [43] N. A. Gippius, S. G. Tikhodeev. Application of the scattering matrix method for calculating the optical properties of metamaterials. Phys. Usp., 52, 967-971(2009).

    [44] V. Karagodsky, C. Chase, C. J. Chang-Hasnain. Matrix Fabry–Perot resonance mechanism in high-contrast gratings. Opt. Lett., 36, 1704-1706(2011).

    [45] R. Orta, A. Tibaldi, P. Debernardi. Bimodal resonance phenomena — part II: high/low-contrast grating resonators. IEEE J. Quantum Electron., 52, 6600409(2016).

    [46] R. Orta, A. Tibaldi, P. Debernardi. Bimodal resonance phenomena — part I: generalized Fabry–Pérot interferometers. IEEE J. Quantum Electron., 52, 6100508(2016).

    CLP Journals

    [1] Leonid L. Doskolovich, Evgeni A. Bezus, Dmitry A. Bykov. Integrated flat-top reflection filters operating near bound states in the continuum[J]. Photonics Research, 2019, 7(11): 1314

    [2] Zarko Sakotic, Alex Krasnok, Andrea Alú, Nikolina Jankovic. Topological scattering singularities and embedded eigenstates for polarization control and sensing applications[J]. Photonics Research, 2021, 9(7): 1310

    Evgeni A. Bezus, Dmitry A. Bykov, Leonid L. Doskolovich. Bound states in the continuum and high-Q resonances supported by a dielectric ridge on a slab waveguide[J]. Photonics Research, 2018, 6(11): 1084
    Download Citation