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We investigate the diffraction of the guided modes of a dielectric slab waveguide on a simple integrated structure
consisting of a single dielectric ridge on the surface of the waveguide. Numerical simulations based on aperiodic
rigorous coupled-wave analysis demonstrate the existence of sharp resonant features and bound states in the
continuum (BICs) in the reflectance and transmittance spectra occurring at the oblique incidence of a transverse-
electric (TE)-polarized guided mode on the ridge. Using the effective index method, we explain the resonances
by the excitation of cross-polarized modes of the ridge. Formation of the BICs are confirmed using a theoretical
model based on coupled-wave theory. The model suggests that the BICs occur due to the coupling of quasi-TE
and quasi-transverse-magnetic modes of the structure. Simple analytical expressions for the angle of incidence and
the ridge width predicting the location of the BICs are obtained. The existence of high-Q resonances and BICs
enables using the considered integrated structure for sensing, transformation of optical signals, and enhancing
nonlinear light–matter interactions. Due to the Lorentzian line shape of the resonances near the BICs, the struc-
ture is also promising for filtering applications. © 2018 Chinese Laser Press

https://doi.org/10.1364/PRJ.6.001084

1. INTRODUCTION

In a wide class of planar (integrated) optoelectronic systems,
processing of the optical signal is performed in a slab wave-
guide [1–11]. Such a geometry corresponds to the “insulator-
on-insulator” platform and is suitable for the creation of fully
integrated optical devices. In this case, the processed signal cor-
responds to a superposition of slab waveguide modes having
different propagation directions (in the case of spatial process-
ing) or different frequencies (in the case of spectral processing).
In this regard, the design of integrated resonant photonic struc-
tures is of great interest [12,13].

In the last few years, much attention has been paid to the
investigation of so-called bound states in the continuum (BICs)
in resonant photonic structures (see the recent review [14] and
references therein). BICs are eigenmodes that have an infinite
lifetime (and an infinitely high quality factor), although they
are supported by a structure having open scattering channels.
The mode leakage of these channels is canceled either due to
symmetry reasons or by means of parameter tuning [14]. In
photonics, BICs were studied in periodic structures (diffraction
gratings, photonic crystal slabs, and infinite arrays of dielectric

rods or spheres) [15–23], defects and interfaces of photonic
crystals [24–26], arrays of optical waveguides [27–29], and
leaky optical waveguides [30], among others [14]. The struc-
tures supporting BICs can be used as “unconventional” narrow-
band waveguides [30]. A slight deviation from the BIC
condition enables obtaining very high-Q resonators, which
leads to various potential applications including lasers, sensors,
and filters.

In this work, we investigate the resonant optical properties
of a very simple structure consisting of a single subwavelength
or near-wavelength ridge on the surface of a single-mode dielec-
tric slab waveguide. We analytically and numerically demon-
strate that, in the case of diffraction of a transverse-electric
(TE)-polarized mode of the waveguide, the studied structure
exhibits BICs and high-Q resonances associated with the exci-
tation of cross-polarized modes of the ridge. Comparing to
Ref. [30], we present a theoretical model that accurately
describes the optical properties of the studied structure. In par-
ticular, we prove the existence of robust BICs and obtain simple
closed-form expressions predicting their locations. The discov-
ered high-Q resonances and BICs supported by the presented
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planar structure make it promising for various applications, in-
cluding the transformation of optical signals, sensing, enhanc-
ing nonlinear light–matter interactions, and spatial (angular)
and spectral filtering. The latter is possible due to the
Lorentzian line shape of the resonances.

The paper is organized as follows. In Section 2, we define
the geometry and discuss the scattering channels of the consid-
ered integrated structure. In Section 3, we present full-wave
numerical simulation results demonstrating the existence of
high-Q resonances in the reflectance and transmittance spectra.
Using the effective index method, we qualitatively explain the
formation of the resonances. By rigorously calculating the qual-
ity factor of the eigenmodes of the structure, we show that it
supports BICs. Section 4 is dedicated to the derivation of a
theoretical model describing the optical properties of the struc-
ture and explaining the BIC formation mechanism. Section 5
concludes the paper.

2. GEOMETRY AND SCATTERING CHANNELS

Let us consider a simple integrated structure shown in Fig. 1(a).
The structure consists of a dielectric ridge with height hr > 0
and width w located on the surface of a dielectric slab wave-
guide with thickness hwg. For simplicity, we consider the case
when the waveguide core and the ridge on its surface are
made of the same material with dielectric permittivity εwg.
Additionally, we assume that the substrate is optically denser
than the superstrate: εsub > εsup. In the present work, we re-
strict our consideration to the case when the waveguides with
thicknesses hwg and hwg � hr (corresponding to the regions
outside and inside the ridge, respectively) are single-mode
for both TE and transverse-magnetic (TM) polarizations.
However, one can show that optical effects similar to the ones
described below arise also in multimode slab waveguides with
properly chosen parameters.

We study the diffraction of a TE-polarized guided mode
with an effective refractive index nTE by an “inclined” ridge,
as shown in Fig. 1(a). The angle between the ridge and the
wave front of the incident mode is denoted by θ and referred
to as the angle of incidence.

In the general case, reflected and transmitted TE- and TM-
polarized guided modes are generated upon diffraction of the
incident mode on the ridge, as well as a continuum of non-guided

waves in the superstrate and substrate propagating away from
the waveguide core layer. However, it was recently demon-
strated that, under certain conditions, polarization conversion
and out-of-plane scattering in such “integrated” diffraction
problems can be completely eliminated [10,11,31].

The considered structure is invariant to translation in the
direction parallel to the ridge interfaces (in the y direction).
According to Maxwell’s equations, the corresponding tangential
wave vector component of the incident wave ky � k0nTE sin θ
has to be conserved for all outgoing waves. Here, k0 � 2π∕λ
is the wave number, and λ is the free-space wavelength.
Therefore, if the incidence angle is chosen so that k2y > k20εsub,
this tangential component has greater magnitude than that of
the wave vector of the propagating plane waves in the substrate.
It means that at angles of incidence greater than the “critical”
angle

θsub � arcsin
� ffiffiffiffiffiffiffi

εsub
p

∕nTE
�
, (1)

all the waves scattered to the substrate are evanescent and do
not carry energy. A similar expression can be written for the
critical angle θsup describing the scattering to the superstrate.
The assumed inequality εsub > εsup implies that θsub > θsup,
and therefore no out-of-plane scattering to the superstrate
occurs once θ > θsub.

A similar approach can be applied to eliminate TM-
polarized reflected and transmitted modes (with effective refrac-
tive index nTM) generated upon diffraction of the incident
TE-polarized mode. Indeed, since in a single-mode slab wave-
guide nTE > nTM [32], a cutoff angle for the TM-polarized
modes exists. Similar to the derivation of Eq. (1), one can show
that at angles of incidence greater than

θTM � arcsin�nTM∕nTE�, (2)

no propagating outgoing TM-polarized modes are generated.
Note that nTM >

ffiffiffiffiffiffiffi
εsub

p
, therefore, θTM > θsub. Hence,

at θ > θTM, only two scattering channels remain open in
the considered structure, namely, reflected and transmitted
TE-polarized modes.

We obtained the cutoff conditions for the waveguide of
thickness hwg concerning outgoing waves in the considered dif-
fraction problem. In a similar way, the ridge region can be con-
sidered as a segment of a slab waveguide with greater thickness
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Fig. 1. (a) Geometry of the considered integrated structure. I , R, and T denote the incident, reflected, and transmitted TE-polarized guided
modes, respectively. (b) 2D effective index model and corresponding refractive indices.
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hwg � hr . Denoting the effective index of the TM-polarized
mode of this slab waveguide by nTM,r, we can write the corre-
sponding cutoff angle as

θTM,r � arcsin�nTM,r∕nTE�: (3)

Therefore, in the angular range θTM < θ < θTM,r , the ridge
region supports both TE- and TM-polarized modes, while the
scattered field contains only two TE-polarized modes. As we
show below, it is in this region that the structure exhibits re-
markable optical properties.

3. NUMERICAL SIMULATIONS: HIGH-Q
RESONANCES AND BICs

In this section, we numerically study the optical properties of a
dielectric ridge on a slab waveguide. Simulations were carried
out for the following parameters: free-space wavelength
λ � 630 nm, dielectric permittivities of the superstrate, wave-
guide layer, and substrate εsup � 1, εwg � 3.32122 (GaP), and
εsub � 1.452, respectively. For these parameters, a slab wave-
guide supports only the fundamental TE- and TM-polarized
modes if its thickness is in the range from 44 nm to 117 nm.
In what follows, as a matter of example, we consider waveguide
thickness hwg � 80 nm and ridge height hr � 30 nm. Thus,
the slab waveguides with thicknesses hwg and hwg � hr are both
single-mode, and the assumptions in Section 2 are fulfilled.

By solving the dispersion equation of a slab waveguide [33],
let us first calculate the effective refractive indices and cutoff
angles [Eqs. (1)–(3)] discussed in the previous section. At
the considered parameters, the slab waveguide outside the ridge
(thickness hwg) supports a TE-polarized mode with effective
refractive index nTE � 2.5913 and a TM-polarized mode with
effective refractive index nTM � 1.6327. The slab waveguide
corresponding to the ridge region (thickness hwg � hr ) supports

TE- and TM-polarized modes with effective refractive indices
nTE,r � 2.8192 and nTM,r � 2.1867, respectively. Critical
angles of incidence corresponding to the closing of different
scattering channels discussed above amount to θsup � 22.7°
(out-of-plane scattering to the superstrate), θsub � 34.0°
(out-of-plane scattering to the substrate), and θTM � 39.1°
(scattering to the TM-polarized guided mode). The cutoff
angle of the TM-polarized mode in the ridge region equals
θTM,r � 57.6°.

A. Transmittance and Reflectance Spectra
In this subsection, we present rigorous simulation results for the
investigated structure. Numerical simulations were performed
using an efficient in-house implementation of the conical dif-
fraction formulation of the rigorous coupled-wave analysis
(RCWA) method [34,35] extended to integrated optics prob-
lems [36,37]. The RCWA, also called the Fourier modal
method, is an established numerical technique for solving
Maxwell’s equations. For simulation of the considered integrated
structure within this approach, it was artificially periodized in the
z direction [36]. To eliminate optical interaction between adja-
cent periods, perfectly matched layers (PMLs) implemented as
nonlinear coordinate transforms [37] were utilized. The simula-
tions were performed with 2 × 350� 1 Fourier harmonics and
with the thickness of the PML equal to 600 nm.

Figures 2(a) and 2(b) show the reflectance and transmittance
of a TE-polarized mode upon diffraction by a ridge on the
waveguide surface versus angle of incidence θ and ridge width
w. For comparison, Figs. 2(c) and 2(d) show the reflectance and
transmittance of a plane wave upon refraction by a thin film
with thickness equal to ridge width w. In this plane-wave dif-
fraction problem, effective refractive indices of the TE-polar-
ized modes in the corresponding regions of the integrated
structure are used as refractive indices of the superstrate and
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Fig. 2. (a) Reflectance and (b) transmittance of the TE-polarized mode versus the angle of incidence θ and ridge width w. Horizontal dashed lines
show the cutoff angles θsup, θsub, θTM, and θTM,r . Field distributions in the structure at the points marked with asterisks in (a) are shown in Fig. 3.
Dashed red curves in (b) show the dispersion of quasi-TMmodes calculated using the approximate Eq. (4). (c) Reflectance and (d) transmittance of a
plane wave upon refraction by a thin film (effective index model) are also shown.
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substrate (nTE) and of the film (nTE,r) [see Fig. 1(b)]. The
polarization of the incident plane wave coincides with the
polarization of the incident mode in the “integrated” problem
(i.e., the plane wave is polarized in the plane of incidence). The
model diffraction problem in Fig. 1(b) is very similar to the
effective index method (EIM), which is widely used for quick
estimation of the effective refractive indices of the modes of
dielectric photonic wire and rib waveguides [33,38].

It is evident in Fig. 2 that when θ > θTM,r , the reflectance
and transmittance of the guided mode (obtained using RCWA)
are very close to the reflectance and transmittance of the plane
wave (obtained within the EIM approach). The periodically
arranged reflectance and transmittance extrema visible in this
region are due to Fabry–Perot resonances of the TE-polarized
mode inside the ridge. In the region θ < θTM, some discrep-
ancies in transmittance are present, which are caused by
scattering to the reflected and transmitted cross-polarized
(TM-polarized) modes and to non-guided waves in the
substrate (at θ < θsub) and in the superstrate (at θ < θsup).
Nevertheless, in the considered angular range (θ < θTM or
θ > θTM,r ), the EIM can be used to obtain reasonable estimates
of the solution of the “integrated” diffraction problem.

At angles of incidence θTM < θ < θTM,r , the situation is
drastically different. In this angular range, sharp resonant peaks
and dips, which are not explained by the plane-wave model, are
present in the reflectance and transmittance spectra shown in
Figs. 2(a) and 2(b), respectively.

B. High-Q Resonances
Starting from this subsection, we focus on the angular range
θTM < θ < θTM,r , where the structure exhibits the most inter-
esting optical properties, namely, narrow resonances with high
quality factor.

To reveal the nature of these high-Q resonances, let us in-
vestigate field distribution in the structure at resonance condi-
tions. Electric field distributions in the integrated structure
corresponding to two points depicted with white asterisks in

Fig. 2(a) are shown in Figs. 3(a) and 3(b). It is evident in
Fig. 3 that at resonances, the field distributions possess a strong
Ez component, which is absent in the incident TE-polarized
mode. This, along with the fact that the resonance region is
bounded by the cutoff angles of TM-polarized modes outside
and inside the ridge, suggests that the resonances are associated
with excitation of cross-polarized (quasi-TM) modes of the
ridge, which, in this case, acts as a leaky rib waveguide [39,40].

To verify this assumption, let us estimate the effective re-
fractive indices of the quasi-TM modes of the ridge using the
EIM [see Fig. 1(b); the used refractive indices are shown in
parentheses] [33,38]. Under this approach, the estimates of the
wave numbers ky,TM,rib can be found by solving the dispersion
relation of the symmetric three-layer slab waveguide [33]

tan�kw� � 2kγ
k2 − γ2

, (4)

where k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20n

2
TM,r − k

2
y,TM,rib

q
and γ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y,TM,rib − k

2
0n

2
TM

q
.

The excitation condition of the found rib waveguide modes,
which relates w and θ, reads as ky,TM,rib � k0nTE sin θ. The
values �w, θ� satisfying this condition are shown with dashed
red curves in Fig. 2(b), which are close to the location of the
resonances. Thus, the observed high-Q resonances are indeed
associated with excitation of cross-polarized modes of the ridge.

C. Bound States in the Continuum
Figure 4(a) shows a magnified fragment of Fig. 2(a) corre-
sponding to the angular range θTM < θ < θTM,r . It is evident
that the angular width (and, consequently, the quality factor) of
the resonances strongly varies along the dispersion curves, ap-
parently vanishing at certain �w, θ� values marked with white
circles in Fig. 4(a). This phenomenon indicates the potential
presence of BICs in the considered structure. Let us recall that
BICs are eigenmodes of the structures with open diffraction
channels, which, however, have an infinite quality factor and
a real frequency due to symmetry reasons or parameter tuning.
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Fig. 3. Electric field distributions in the structure at resonance conditions: (a) w � 326 nm, θ � 52.66°; (b) w � 470 nm, θ � 47.58°.
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In the considered structure, the bound states arise in the con-
tinuum of guided modes supported by the slab waveguide with
thickness hwg [see Fig. 1(a)].

In order to determine whether the structure actually sup-
ports BICs, let us investigate the quality factor of the modes
in the region shown by the white rectangle in Fig. 4(a). In
Figs. 5(a) and 5(b), we present resonance angle θ and quality
factor Q of the eigenmodes of the ridge, which were calculated
using the RCWA-based approach proposed by some of the
present authors in Refs. [41,42] (see the details in Appendix A).
It is evident in Fig. 5 that at w � 344 nm and θ � 53.06°, the
quality factor diverges. This indicates the presence of a BIC.

The BICs in the considered structure are robust, i.e., when
the geometrical parameters of the structure are slightly changed,
the BICs continue to exist at a slightly different wavelength λ
and angle θ. This is confirmed by the rigorous numerical sim-
ulation results. For example, if we change the ridge width from
w � 344 nm to w � 343 nm, the BIC position will shift from

�λ, θ� � �630 nm, 53.06°� to �λ, θ� � �625 nm, 53.58°�.
Similarly, at a larger ridge width w � 345 nm, the BIC
emerges at �λ, θ� � �635 nm, 52.55°�.

Figure 5(c) shows the angular reflectance spectra of the
structure at different ridge widths. According to Figs. 5(b) and
5(c), the quality factor of the resonance increases when ap-
proaching the BIC, which results in narrowing of the resonant
reflectance peak. The full width at half maximum (FWHM) of
the reflectance peak in Fig. 5(c) varies from 0° (at the BIC)
to 0.1°.

It is important to note that the resonances in Fig. 5(c) have
symmetric Lorentzian line shape in contrast to the general,
essentially asymmetric, Fano line shape of the resonances that
usually occur near the BICs [22,23]. Lorentzian line shape
emerges when the non-resonant scattering pathway is negli-
gible, i.e., no reflection takes place in non-resonant conditions.
Indeed, this is the case, since the contrast between the effective
refractive indices inside and outside the ridge (nTE and nTE,r) is
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relatively low, and therefore almost no reflection occurs away
from the resonances. Symmetric line shape on a zero back-
ground is essential when designing optical filters. The plots in
Fig. 5(c) suggest that the proposed structure can be used as a
narrowband spatial (angular) filter. Further calculations not
presented here show that the same structure can also be utilized
as a spectral (frequency) filter.

In contrast to the positions of the resonances, the variation
of the quality factor and the appearance of the BICs cannot be
explained by an EIM-based approach. Let us note that the exist-
ence of BICs in a similar structure was predicted in Ref. [30],
where the ridge was considered as a photonic rib waveguide with
an unconventional (BIC-based) guiding mechanism. In contrast
to Ref. [30], we consider this structure as an integrated optical
element for slab waveguide modes and, in the next section, derive
a simple and accurate coupled-wave model describing its reflec-
tance and transmittance spectra, predicting the high-Q resonan-
ces in the ridge, and confirming the existence of BICs.

4. COUPLED-WAVE ANALYSIS OF THE
RESONANCES

In this section, we present a simple model based on coupled-
wave equations, which explains the formation of high-Q reso-
nances and predicts the location of BICs supported by the
considered structure.

A. Coupled-Wave Equations
In order to obtain coupled-wave equations, let us revisit the
effective index model in Fig. 1(b), where the integrated struc-
ture shown in Fig. 1(a) is replaced with a z-invariant slab. In
contrast to this model considered above in Subsection 3.A, here
we will take into account the cross-polarization mode coupling
that takes place in the considered integrated structure. To do
this, we represent the field inside the slab as TE and TM plane
waves, which are coupled at the interfaces. The field over and
under the slab contains the incident, reflected, and transmitted
TE waves only (see Fig. 6). The wave numbers of the plane
waves are defined by the effective refractive indices: nTE,r and
nTM,r for the waves inside the slab; nTE for the waves outside
the slab.

According to Fig. 6, let us introduce the following plane
waves: the incident wave (with complex amplitude I ); reflected

wave (R); TE and TMwaves propagating downwards inside the
slab (U 1 and V 1); and upward-propagating TE and TM waves
inside the slab (U 2 and V 2). Amplitudes U 1 and V 1 are de-
fined at the lower interface of the slab; amplitudes of the same
waves at the upper interface equal U 1e−iϕ and V 1e−iψ .
Similarly, amplitudes U 2 and V 2 are defined at the upper inter-
face of the slab; amplitudes of these waves at the lower interface
are U 2e−iϕ and V 2e−iψ . Phases ϕ and ψ are defined through the
effective refractive indices of the TE and TM waves inside the
slab, respectively

ϕ � w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20n

2
TE,r − k

2
y

q
,

ψ � w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20n

2
TM,r − k

2
y

q
: (5)

Here, w is the slab thickness, which is equal to the width of the
ridge in the initial “integrated” diffraction problem; and ky is
the wave vector component of the plane waves parallel to the
slab interfaces. Note that the square roots in Eq. (5) are positive
numbers that are x components of the wave vectors of TE and
TM plane waves inside the slab.

At the upper interface, the incident and scattered plane
waves are related by a 3 × 3 scattering matrix2

4U 1e−iϕ

V 1e−iψ

R

3
5 �

2
4 r1 rc t
rc r2 tc
t tc r

3
5 ×

2
4U 2

V 2

I

3
5, (6)

where r and t are reflection and transmission coefficients of the
incident TE plane wave I ; r1 and r2 give reflection coefficients
of the U and V waves; and rc and tc are cross-polarization re-
flection and transmission coefficients. Note that the scattering
matrix in Eq. (6) is symmetric due to reciprocity. Also, the
scattering matrix is unitary due to energy conservation, since
neither absorption nor out-of-plane scattering occurs in the
considered integrated structure. Let us note that the elements
of the scattering matrix can be rigorously calculated using the
RCWA [34–37] by solving the problem of diffraction of a
guided mode on an interface between two slab waveguides with
different thicknesses: hwg and hwg � hr .

By applying the same scattering matrix at the lower slab in-
terface, we obtain the following set of coupled-wave equations:8>>>><

>>>>:

U 1 � eiϕ�r1U 2 � rcV 2 � tI�,
V 1 � eiψ �rcU 2 � r2V 2 � tcI�,
U 2 � eiϕ�r1U 1 � rcV 1�,
V 2 � eiψ �rcU 1 � r2V 1�,
R � tU 2 � tcV 2 � rI :

(7)

For simplicity, we omitted the equation for the transmitted
wave amplitude T . However, the following theory can be
derived for analysis of the transmission coefficient as well.

By eliminating U 1, U 2, V 1, and V 2 from Eq. (7), we
represent the reflection coefficient R in the following form:

R � r � N
D1D2

: (8)

Here, the denominator is the product of the following two
terms:

D1 � �e−iϕ � r1��e−iψ � r2� − r2c , (9)

I R

V2

U2

V1U1

y

xT

TE
TM

Fig. 6. Plane wave diffraction by a slab supporting two cross-
polarized waves coupled at the interfaces.
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D2 � �e−iϕ − r1��e−iψ − r2� − r2c , (10)

whereas the numerator N reads as

N � r1t2e−2iψ � 2rctc te−iϕe−iψ � r2t2c e−2iϕ

− �r1r2 − r2c ��r2t2 − 2rctc t � r1t2c �: (11)

Here, we assume that the incident wave has unity amplitude
(I � 1).

The modes of the structure correspond to the poles of the
reflection coefficient [41,43]. Therefore, we can obtain the
dispersion equation of the modes by equating the denominator
in Eq. (8) to zero:

D1D2 � 0: (12)

The fact that the denominator is a product of two terms means
that the considered structure supports two uncoupled sets of
modes, namely, the symmetric and antisymmetric modes of
the structure. One can calculate these modes independently
by solving the equations D1 � 0 and D2 � 0.

Let us consider the antisymmetric modes defined by equa-
tion D1 � 0. If no cross-polarization coupling occurs (if
rc � 0), this equation has two independent solutions, e−iϕ �
r1 � 0 and e−iψ � r2 � 0, which correspond to the antisym-
metric TE and the antisymmetric TM modes, respectively.
If rc ≠ 0, these modes are coupled and form antisymmetric
modes with a more complex polarization state. Similarly,
the equation D2 � 0 describes the coupling of symmetric
TE modes with symmetric TM modes.

It is noteworthy that the equationD1D2 � 0 can be written
in the following matrix form:

det

�
I −

��
r1 rc
rc r2

�
×
�
eiϕ 0
0 eiψ

�	
2



� 0.

This expression is used as the dispersion equation in the theory
of the so-called matrix Fano resonances of high-contrast gra-
tings [44]. A similar study of high-contrast gratings was pre-
sented in Ref. [45], where the authors used the concept of
generalized Fabry–Perot interferometers [46].

B. Bound States in the Continuum
Here, we show that the coupled-wave model derived in the pre-
vious subsection predicts BICs in the considered structure.
In what follows, we derive explicit expressions for frequency ω
and wave number ky of the BIC, as well as expressions for ridge
width w and angle of incidence θ describing the BIC locations
in Fig. 4(a).

The modes of the structure are described by the zeros of the
denominator in Eq. (8). Therefore, the BICs are real-ω, real-ky
solutions of one of the following equations:D1 � 0 orD2 � 0.
Despite the simple form of these equations, it is difficult to
solve them for real ω and ky. Instead of doing this, we will
use an alternative approach.

Assume that ω is the real frequency of a certain BIC. Since
the modes are described by the zeros of the denominator in
Eq. (8), the reflection coefficient in Eq. (8) at frequency ω
tends to infinity. This apparently violates the energy conserva-
tion condition. To overcome this contradiction, ω should also
be a zero of the numeratorN in Eq. (8). In this case, the pole of
R, which is associated with the zero of the denominator,

will be compensated by the zero of the numerator. We will
use this fact to find the BICs.

Let us first consider the modes defined by the equation
D1 � 0. To find the corresponding BICs, we solve the follow-
ing system with respect to the exponents eiϕ and eiψ :�

D1 � 0,
N � 0.

(13)

After some simple transformations, we find two different
solutions of Eq. (13). The first solution reads as

eiϕ � tc
rc t − r1tc

, eiψ � t
rc tc − r2t

: (14)

The second solution can be written as

eiϕ � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
r1�r1r2 − r2c �

r
, eiψ � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1

r2�r1r2 − r2c �
r

: (15)

Since both ω and kx have to be real for a BIC to take place, the
phases in Eq. (5) should also be real; therefore, eiϕ and eiψ

should be unity-amplitude complex numbers. To verify
whether this is true, let us recall that r, r1, r2, rc , t , and tc
are not arbitrary complex numbers, but adhere to the energy
conservation law, which implies the unitarity of the scattering
matrix in Eq. (6). Simple deductions based on the unitarity
property suggest that the right-hand sides in Eq. (14) have
unity amplitudes (see Appendix B); hence, Eq. (14) indeed de-
scribes the BICs. This, however, is not the case for Eq. (15): by
considering an arbitrary 3 × 3 unitary matrix, one can show that
the absolute values of the right-hand sides of Eq. (15) are, as a
rule, not equal to 1.

Now, let us obtain explicit expressions for phases ϕ and ψ .
To do this, we equate the arguments of the left- and right-hand
sides of Eq. (14)

ϕ � πm� arg
tc

rc t − r1tc
, ψ � πl � arg

t
rc tc − r2t

: (16)

Here, both m and l are even integer numbers. The obtained
Eq. (16) describes the positions of the BICs satisfying equation
D1 � 0. Similar analysis for the equationD2 � 0 results in the
very same Eq. (16), where both m and l are odd integers. Also,
according to Eq. (5), phases ϕ and ψ should be positive. By
defining the range of the principal value of the argument of
a complex number as the �0, 2π� interval, we impose the non-
negativity condition also on the m and l values. Additionally,
according to Eq. (5), condition ϕ > ψ should be met since
nTE,r > nTM,r .

Having obtained the expressions for ϕ and ψ , we can finally
solve Eq. (5) for ω and ky

ω � c
w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2 − ψ2

n2TE,r − n
2
TM,r

s
, ky �

1

w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2n2TM,r − ψ

2n2TE,r
n2TE,r − n

2
TM,r

s
:

(17)

The obtained Eqs. (16) and (17) describe the positions
(frequencies and wave numbers) of the BICs for a given struc-
ture geometry. If the frequency of the incident light is fixed, a
BIC can be obtained by tuning the angle of incidence θ and
ridge width w, as it is evident in Fig. 4. In this case, we recall the
expression ky � k0nTE sin θ and solve Eq. (5) for θ and w
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w � 1

k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2 − ψ2

n2TE,r − n
2
TM,r

s
,

θ � arcsin

0
@ 1

nTE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2n2TM,r − ψ

2n2TE,r
ϕ2 − ψ2

s 1
A: (18)

It is important to note that the very existence of the analytical
expressions [Eqs. (17) and (18)] confirms that the BICs in the
considered structure are robust (see Subsection 3.C). Indeed,
any variation of the incident light wavelength and/or of the geo-
metrical parameters of the structure results in a change in the
right-hand sides of Eqs. (6), (16), and (18). Therefore, the
BICs will not disappear but change their locations in the �w, θ�
plane according to Eq. (18). This reasoning is valid provided that
only two scattering channels remain open (see Section 2).

Let us also note that since the BICs are simply real-ω sol-
utions of the equation D1 � 0 (or D2 � 0), BIC conditions
are uniquely defined by reflection coefficients r1, r2, and rc
used in Eqs. (9) and (10). However, to obtain simple closed-
form expressions for the BIC condition, we had to use the
values of t and tc in Eq. (16).

C. Comparison with the Rigorous Simulations
To verify the presented theoretical model, we used it to calcu-
late the reflectance spectrum, mode dispersion, and locations
of the BICs. The obtained results were compared with RCWA
simulation results.

Figure 4(b) shows the reflectance spectrum calculated using
Eqs. (8)–(11). This model spectrum is in excellent agreement
with the rigorously calculated one shown in Fig. 4(a). Slight
discrepancies between the two spectra can be seen only in the
vicinity of w � 0. These discrepancies are due to the near-field
interactions in a narrow ridge, which are neglected in the pre-
sented theoretical model.

Dispersion of the modes was calculated by numerically solving
the equation D1D2 � 0, where D1 and D2 are given by Eqs. (9)
and (10). For the matter of illustration, we show the dispersion
not in Fig. 4(b) but in the rigorously calculated Fig. 4(a). The
presented analytically calculated dispersion curves are in perfect
agreement with the resonances in the rigorously calculated
spectrum. Using the model, we also calculated the quality factors
of the modes; however, they are visually identical to the rigorously
calculated curve in Fig. 5 and thus are not shown.

The white circles depicting the BICs in Fig. 4(a) were cal-
culated using Eqs. (18) and (16). It is evident from the figure
that the presented coupled-wave model provides an accurate
estimate of the BIC positions. As mentioned in the previous
subsection, these white circles were obtained when m and l
in Eq. (16) have the same parity. It is interesting to note that
when m and l are of different parity, the corresponding �w, θ�
points obtained from Eq. (18) lie on the “resonant” curves
jRj � 1; this can be shown by direct substitution into Eq. (8).
These points are shown with black crosses in Fig. 4(a). In con-
trast to the BICs (infinite-Q resonances shown with white
circles), the black crosses describe the relatively low-Q resonan-
ces of the structure.

In Section 3, using the EIM approach, we argued that the
BICs appear on the quasi-TM dispersion curves of the ridge.

The derived theoretical model provides us with deeper insight
into the BIC formation mechanism. According to the model,
the BICs in the considered structure emerge due to the inter-
action of the quasi-TE and quasi-TM modes. If we exclude the
TE waves propagating inside the ridge from the presented
coupled-wave model, the BICs will disappear from the model
spectrum.

5. CONCLUSION

In the present work, we demonstrated that in the case of diffrac-
tion of a TE-polarized mode of a slab waveguide by a dielectric
ridge located on the waveguide surface, pronounced resonances
in the reflectance and transmittance spectra occur. These resonan-
ces take place at the oblique incidence of the mode when only two
scattering channels are open, which correspond to the reflected
and transmitted modes of the same polarization. The considered
structure supports resonances of arbitrarily high-quality factor, as
well as modes with an infinite Q-factor, i.e., BICs.

We developed a coupled-wave model explaining the optical
properties of the structure. By considering the interaction of the
TE and TM modes inside the ridge, we derived an accurate
expression for the complex reflection coefficient of the struc-
ture. Using the proposed model, we analytically confirmed that
the considered structure indeed supports robust BICs, which
can be obtained by tuning two parameters: ridge width and
angle of incidence. We also obtained simple closed-form ex-
pressions for these parameters providing the BICs. The devel-
oped model is in perfect agreement with the presented full wave
simulation results.

The authors believe that the investigated planar structure
exhibiting high-Q resonances with Lorentzian line shape can
be used as a narrowband integrated optical spatial (angular) or
spectral filter. The existence of these high-Q resonances and
BICs makes the structure promising also for sensing, enhancing
nonlinear light–matter interactions, and analog optical signal
processing. In particular, since the transmission coefficient of
the ridge strictly vanishes at the resonances, the structure en-
ables performing spatial optical differentiation in transmission
as well as spatial optical integration in reflection. This applica-
tion of the structure will be the subject of a separate work.

APPENDIX A. DETAILS OF THE EIGENMODE
CALCULATION

In this appendix, we present the details of the numerical
calculation of the eigenmodes of the structure. In particular,
we are interested in the quality factor of the modes, which
is defined as Q � Reω∕�−2 Imω�, where ω is the complex
eigenfrequency.

The complex eigenfrequency ω can be found as the pole
of the scattering matrix S�ω, ky� [41], where ky is the wave
number of the mode. However, at a fixed angle of incidence
θ, the wave number itself depends on angular frequency as
ky � �ω∕c�nTE sin θ. Here, nTE is the effective refractive index
of the incident mode, which also depends on frequency ω due
to material and structural dispersion. Therefore, to calculate the
complex frequency of the mode, we numerically find the com-
plex pole of the matrix S�ω, �ω∕c� · nTE�ω� sin θ	, which is
considered as a function of ω. Note that the calculated mode
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will have both a complex frequency and a complex wave num-
ber. Therefore, it will decay in both time and space. The pre-
sented approach guarantees that the imaginary part of the
complex frequency is accurately calculated and describes the
line width of the resonance in the frequency spectrum.

It is worth noting that the calculation of the scattering
matrix requires defining the basis of incident and scattered
waves. This requires special attention in the case of complex
frequencies, as discussed in Ref. [42].

Having a method for calculating the complex frequencies,
and, hence, the complex wavelengths of the modes, we can nu-
merically solve the equation Re λ � 630 nm for real θ, which
gives us the method for calculating angle of incidence θ, at
which the mode is excited exactly at the given wavelength.
Moreover, since we calculate the complex ω as the pole of
the scattering matrix, we can also calculate the quality factor.
This is the approach we used to obtain Fig. 5.

APPENDIX B. UNITY AMPLITUDES OF THE
RIGHT-HAND SIDES OF EQ. (14)

Here, we show that the right-hand sides of Eq. (14) have unity
amplitude. To do this, we consider the scattering matrix S used
in Eq. (6). We write the inverse of S in two ways: using the
unitarity property (S−1 � S
) and in terms of the adjugate
matrix. By equating these two matrices, we obtain2
4 r
1 r
c t


r
c r
2 t
c
t
 t
c r


3
5 � 1

det S

2
4 rr2 − t2c tt c − rrc rc tc − r2t

ttc − rrc rr1 − t2 rct − r1tc
rc tc − r2t rc t − r1tc r1r2 − r2c

3
5:

Now we can equate the absolute values of the corresponding
matrix elements in this equation. Since the determinant of a
unitary matrix lies on the unit circle, we arrive at the equalities
jtc j � jrct − r1tc j and jtj � jrc tc − r2tj, which prove the
required statement.
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