• Laser & Optoelectronics Progress
  • Vol. 50, Issue 6, 61101 (2013)
Liu Qing*, Qin Yali, Li Jia, and Li Ruchun
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop50.061101 Cite this Article Set citation alerts
    Liu Qing, Qin Yali, Li Jia, Li Ruchun. Intensity Distribution of Single Soliton at Focal Plane in Tight Focusing System[J]. Laser & Optoelectronics Progress, 2013, 50(6): 61101 Copy Citation Text show less
    References

    [1] Zhang Zhiming, Pu Jixiong, Wang Xiqing. Focusing of cylindrically polarized Bessel-Gaussian beams through a high numerical-aperture lens[J]. Chinese J. Lasers, 2008, 35(3): 401~405

    [2] V. V. Kotlyar, A. A. Almazov, S. N. Khonina et al.. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate[J]. J. Opt. Soc. Am. A, 2005, 22(5): 849~861

    [3] M. S. Soskin, M. V. Vasnetsov. Singular Optics. In Progress in Optics [M]. E. Wolf (ed.). Amsterdam: Elservier, 2001, 42: 219~276

    [4] Z. Zhang, J. Pu, X. Wang. Focusing of partially coherent Bessel-Gaussian beams through a high numerical-aperture objective[J]. Opt. Lett., 2008, 33(1): 49~51

    [5] K. Lindfors, T. Setala, M. Kaivola et al.. Degree of polarization in tightly focused optical fields[J]. J. Opt. Soc. Am. A, 2005, 22(3): 561~568

    [6] Chen Baosuan, Zhang Zhiming, Pu jixiong. Tight focusing of partially coherent and circularly polarized vortex beams[J]. J. Opt. Soc. Am. A, 2009, 26(4): 862~869

    [7] T. Grosjean, D. Courjon. Smallest focal spots[J]. Opt. Commun., 2007, 272(2): 314~319

    [8] Qiwen Zhan, J. Leger. Focus shaping using cylindrical vector beams[J]. Opt. Express, 2002, 10(7): 324~331

    [9] G. M. Lerman, U. Levy.Tight focusing of spatially variant vector optical fields with elliptical symmetry of linear polarization[J]. Opt. Lett., 2007, 32(15): 2194~2196

    [10] H. He, M. E. J. Friese, N. R. Heckenberg et al.. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase sungularity]J]. Phys. Rev. Lett., 1995, 75(5): 826~829

    [11] Liu Fei, Li Yanqiu. Design of high numerical aperture projection objective for industrial extreme ultraviolet lithography[J]. Acta Optica Sinica, 2011, 31(2): 0222003

    [12] Zhou Yuan, Li Yanqiu, Liu Guangcan. Study on pellicle optimization and polarization aberration induced by pellicle in hyper numerical aperture lithography[J]. Chinese J. Lasers, 2011, 38(4): 0407001

    [13] K. S. Youngworth, T. G. Brown. Focusing of high numerical aperture cylindrical-vector beams[J]. Opt. Express, 2000, 7(2): 77~87

    [14] G. Ciattoni, A. Ciattoni, C. Sapia. Radially and azimuthally polarized vortices in uniaxial crystals[J]. Opt. Commun., 2003, 202(1): 33~40

    [15] Zhang Zhiming, Pu Jixiong, Wang Xiqing. Tight focusing of radially and azimuthally polarized vortex beams through a uniaxial birefringent crystal[J]. Appl. Opt., 2008, 47(12): 1963~1967

    [16] Yaoju Zhang, Xun Xu, Y. Okuno. Theoretical study of optical recording with a solid immersion lens illuminated by focused double-ring-shape radially polarized beam[J]. Opt. Commun., 2009, 282(23): 4481~4485

    [17] L. Ciocci, R. M. Echarri, J. M. Simon. Diffraction in high numerical aperture systems: polarization effects[J]. J. Opt., 2010, 12(1): 015408

    [18] W. Gao. Effects of different correlations of partially coherent electromagnetic beam on three-dimensional spectral intensity distribution in the focal region[J]. Opt. Commun., 2010, 283(23): 4572~4581

    [19] Xiumin Gao, Qi Wang, Qiufang Zhan et al.. Focal patterns of higher order hyperbolic-cosine-Gaussian beam with one optical vortex[J]. Opt. Quant. Electron., 2011, 42(6-7): 367~380

    [20] Zhehai Zhou, Qiaofeng Tan, Guofan Jin. Focusing of high polarization order axially-symmetric polarized beams[J]. Chin. Opt. Lett., 2009, 7(10): 938~940

    [21] Xiumin Gao, JianWang, Haitao Gu et al.. Focusing of hyperbolic-cosine-Gaussian beam with a non-spiral vortex[J]. Optik, 2009, 120(5): 201~206

    [22] K. R. Chen. Focusing of light beyond the diffraction limit of half the wavelength[J]. Opt. Lett., 2010, 35(22): 3763~3765

    [23] Fang Guijuan, Tian Bo, Pu Jixiong. Focusing properties of the double-vortex beams through a high numerical-aperture objective[J]. Opt. Laser Technol., 2011, 44(2): 441~445

    [24] Guo Lina, Tang Zhilie, Liang Chongqing et al.. Intensity and spatial correlation properties of tightly focused partially coherent radially polarized vortex beams[J]. Opt. Laser Technol., 2010, 43(4): 895~898

    [25] K. Jahn, N. Bokor. Intensity control of the focal spot by vectorial beam shaping[J]. Opt. Commun., 2010, 293(24): 4859~4865

    [26] Xiang-Jun Chen, Hui-Li Wang, Wa Kun Lam. Two-soliton solution for the derivative nonlinear Schrdinger equation with nonvanishing boundary conditions[J]. Phys. Lett. A, 2006, 353(2-3): 185~189

    CLP Journals

    [1] Yuan Baoyun, Pang Jing. Several Methods for Solving Nonlinear Schr.dinger Equation[J]. Laser & Optoelectronics Progress, 2014, 51(4): 40604

    Liu Qing, Qin Yali, Li Jia, Li Ruchun. Intensity Distribution of Single Soliton at Focal Plane in Tight Focusing System[J]. Laser & Optoelectronics Progress, 2013, 50(6): 61101
    Download Citation