• Laser & Optoelectronics Progress
  • Vol. 60, Issue 3, 0312016 (2023)
Xionglei Lin1,2, Xiaobo Su1,2, Jianing Wang1,2, Yunke Sun1,2, and Pengcheng Hu1,2,*
Author Affiliations
  • 1Center of Ultra-Precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
  • 2Key Laboratory of Ultra-Precision Intelligent Instrumentation, Ministry of Industry and Information Technology, Harbin 150080, Heilongjiang, China
  • show less
    DOI: 10.3788/LOP230440 Cite this Article Set citation alerts
    Xionglei Lin, Xiaobo Su, Jianing Wang, Yunke Sun, Pengcheng Hu. Laser Interferometer Technology and Instruments for Sub-Nanometer and Picometer Displacement Measurements[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312016 Copy Citation Text show less
    Principle of homodyne laser interference measurement
    Fig. 1. Principle of homodyne laser interference measurement
    Principle of heterodyne laser interference measurement
    Fig. 2. Principle of heterodyne laser interference measurement
    HIT HUE displacement measurement system
    Fig. 3. HIT HUE displacement measurement system
    Keysight 55280B displacement measurement system[12]
    Fig. 4. Keysight 55280B displacement measurement system12
    Zygo ZMI displacement measurement system[13]
    Fig. 5. Zygo ZMI displacement measurement system13
    SIOS SP displacement measurement system[14]
    Fig. 6. SIOS SP displacement measurement system14
    Renishaw RLE displacement measurement system[15]
    Fig. 7. Renishaw RLE displacement measurement system15
    Schematic of the offset locked thermal frequency stabilization principle
    Fig. 8. Schematic of the offset locked thermal frequency stabilization principle
    Periodic nonlinearity error mechanism in homodyne and heterodyne interferometers. (a) Lissajous figure of the three errors and multi-order ghost reflection; (b) spectral distribution of the multi-order ghost reflection and dual-frequency aliasing
    Fig. 9. Periodic nonlinearity error mechanism in homodyne and heterodyne interferometers. (a) Lissajous figure of the three errors and multi-order ghost reflection; (b) spectral distribution of the multi-order ghost reflection and dual-frequency aliasing
    Multi-order ghost reflection
    Fig. 10. Multi-order ghost reflection
    Structure of fully symmetrical optical path[27]
    Fig. 11. Structure of fully symmetrical optical path27
    Schematic of measurement principle of double quadrature phase-locked algorithm[36-37]
    Fig. 12. Schematic of measurement principle of double quadrature phase-locked algorithm[36-37]
    Error sourceError modelTraditional interferometerSub-nanometer and petermeter interferometer
    Laser frequency stabilityLmaxΔv0/v0Lmax×10-8Lmax×10-9
    Laser frequency accuracyLDΔv0/v0LD×10-9LD×10-9
    Dual-frequency laser frequency stabilityLCΔf0/f0LC×10-11LC×10-11
    Phase measurement errorΔφ2π/512-2π/10242π/1024-2π/4096
    Periodic nonlinearity error10 nm1 nm
    Air refractive index errorLmaxΔn/nLmax×10-9-10-8≈0@vacuum
    Thermal drift error of optical prism groupDETΔT 50nm/×ΔT20 nm/×ΔT
    Abbe errorLmaxθ00
    Cosine errorLmaxsin2β/2Lmax×10-10Lmax×10-10
    Dead-path errorLDΔn/nLD×10-9≈0
    Dynamic measurement errorΔτv10-7-10-6×v10-8-10-9×v
    Table 1. Typical error term of the laser interferometer
    Xionglei Lin, Xiaobo Su, Jianing Wang, Yunke Sun, Pengcheng Hu. Laser Interferometer Technology and Instruments for Sub-Nanometer and Picometer Displacement Measurements[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312016
    Download Citation