Xionglei Lin, Xiaobo Su, Jianing Wang, Yunke Sun, Pengcheng Hu. Laser Interferometer Technology and Instruments for Sub-Nanometer and Picometer Displacement Measurements[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312016

Search by keywords or author
- Laser & Optoelectronics Progress
- Vol. 60, Issue 3, 0312016 (2023)

Fig. 1. Principle of homodyne laser interference measurement

Fig. 2. Principle of heterodyne laser interference measurement

Fig. 3. HIT HUE displacement measurement system
![Keysight 55280B displacement measurement system[12]](/Images/icon/loading.gif)
Fig. 4. Keysight 55280B displacement measurement system[12]
![Zygo ZMI displacement measurement system[13]](/Images/icon/loading.gif)
Fig. 5. Zygo ZMI displacement measurement system[13]
![SIOS SP displacement measurement system[14]](/Images/icon/loading.gif)
Fig. 6. SIOS SP displacement measurement system[14]
![Renishaw RLE displacement measurement system[15]](/Images/icon/loading.gif)
Fig. 7. Renishaw RLE displacement measurement system[15]

Fig. 8. Schematic of the offset locked thermal frequency stabilization principle

Fig. 9. Periodic nonlinearity error mechanism in homodyne and heterodyne interferometers. (a) Lissajous figure of the three errors and multi-order ghost reflection; (b) spectral distribution of the multi-order ghost reflection and dual-frequency aliasing

Fig. 10. Multi-order ghost reflection
![Structure of fully symmetrical optical path[27]](/Images/icon/loading.gif)
Fig. 11. Structure of fully symmetrical optical path[27]
![Schematic of measurement principle of double quadrature phase-locked algorithm[36-37]](/Images/icon/loading.gif)
|
Table 1. Typical error term of the laser interferometer

Set citation alerts for the article
Please enter your email address