• Opto-Electronic Engineering
  • Vol. 51, Issue 2, 230211 (2024)
Jian Luo, Jie Song, Sijun Fang, Fanle Kong, and Yong Yan*
Author Affiliations
  • MOE Key Laboratory of TianQin Mission, TianQin Research Center for Gravitational Physics & School of Physics and Astronomy, Frontiers Science Center for TianQin, Gravitational Wave Research Center of CNSA, Sun Yat-sen University (Zhuhai Campus), Zhuhai, Guangdong 519082, China
  • show less
    DOI: 10.12086/oee.2024.230211 Cite this Article
    Jian Luo, Jie Song, Sijun Fang, Fanle Kong, Yong Yan. Decoupling study and noise analysis of multi-degree-of-freedom deformation measurement method for space gravitational wave detection telescope[J]. Opto-Electronic Engineering, 2024, 51(2): 230211 Copy Citation Text show less
    Schematic diagram of the composition of a three-degree-of-freedom deformation measurement system
    Fig. 1. Schematic diagram of the composition of a three-degree-of-freedom deformation measurement system
    Schematic diagram of the three-degree-of-freedom deformation measurement system
    Fig. 2. Schematic diagram of the three-degree-of-freedom deformation measurement system
    Schematic diagram of measurement point position selection
    Fig. 3. Schematic diagram of measurement point position selection
    Schematic diagram of the decoupling mathematical model for the three-degree-of-freedom deformation measurement system
    Fig. 4. Schematic diagram of the decoupling mathematical model for the three-degree-of-freedom deformation measurement system
    Zemax optical system simulation
    Fig. 5. Zemax optical system simulation
    Relationship between displacement and phase
    Fig. 6. Relationship between displacement and phase
    (a) Schematic diagram of the actual measurement path; (b) Zemax optical path modeling diagram
    Fig. 7. (a) Schematic diagram of the actual measurement path; (b) Zemax optical path modeling diagram
    Laser frequency noise background
    Fig. 8. Laser frequency noise background
    Laboratory temperature and vibration level. (a) Temperature test chart; (b) Vibration test chart
    Fig. 9. Laboratory temperature and vibration level. (a) Temperature test chart; (b) Vibration test chart
    NI data acquisition card noise background
    Fig. 10. NI data acquisition card noise background
    Photodetector noise background
    Fig. 11. Photodetector noise background
    Background noise of the single chain interferometer
    Fig. 12. Background noise of the single chain interferometer
    方法优点缺点
    电学法[20]电容测量精度高、稳定性好、测量速度快、反应时间快无法实现非接触测量,测量范围小
    电感测量精度高、对工作环境要求低
    光学法[21]光杠杆测量原理简单,易操作,稳定性高灵敏度低
    多路干涉响应速度快,灵敏度在1 mHz以上占有优势,测量范围更大,角度测量非线性更小结构复杂,对环境敏感,对结构复杂微 变形的测量和表征能力有限
    差分波前角度测量简单高效只能进行角度测量且精度受限于探测器
    Table 1. Advantages and disadvantages of multiple-degree-of-freedom measurement methods
    相对位移相位差
    PD1PD2PD3
    初始位置000
    沿光轴方向+z平移20 nm0.470.470
    Rx方向旋转1.7 µrad0.660.470.61
    垂直光轴方向+y平移20 nm000.30
    Table 2. Test the relationship between the rigid body displacement of the mirror and the phase difference received by the photodetector
    自由度比值
    zdI : S : α = 1 : 0 : 0
    RxdI : S : α= 10000 : 1 : 0
    ydI : S : α= 10000 : 1 : 1
    Table 3. Error sensitivity analysis of the measurement system with multiple degrees of freedom
    测量系统组成部分主要噪声源噪声分配 (nm/Hz1/2@1 mHz)备注
    激光光源激光频率噪声3要求激光频率噪声δf小于4.2×107<Hz/Hz1/2@1 mHz
    前端光程耦合噪声声光调制耦合噪声1等效位移噪声<1 nm/Hz1/2@1 mHz
    光纤温度耦合噪声2光纤温度波动δT≤15 mK/Hz1/2@1 mHz
    集成光学 器件平台温度位移耦合噪声8温度位移耦合系数dS/dT=70 nm/K,测试环境温度波动δT≤15 mK/Hz1/2@1 mHz
    振动位移耦合噪声2振动位移耦合系数dS/dx=0.3×10−3 m/m,测试环境振动波动δX≤1×10−3 m/s /Hz1/2@1 mHz
    空气折射率噪声2温度波动δT≤15 mK/Hz1/2@1 mHz
    偏振噪声2等效位移噪声<2 nm/Hz1/2@1 mHz
    杂散光噪声3控制杂散光强度相较于主光束低于−20 dB
    信号采集 数据处理探测器耦合噪声1相对强度噪声需低于−100 dB/Hz@1 mHz
    相位读取噪声0.01要求相位计等效位移本底噪声是0.01 nm/Hz1/2@1 mHz
    测量系统总体噪声10
    Table 4. Allocation and requirements of optical path noise indicators for the telescope deformation measurement system
    Jian Luo, Jie Song, Sijun Fang, Fanle Kong, Yong Yan. Decoupling study and noise analysis of multi-degree-of-freedom deformation measurement method for space gravitational wave detection telescope[J]. Opto-Electronic Engineering, 2024, 51(2): 230211
    Download Citation