• Opto-Electronic Engineering
  • Vol. 51, Issue 2, 230211 (2024)
Jian Luo, Jie Song, Sijun Fang, Fanle Kong, and Yong Yan*
Author Affiliations
  • MOE Key Laboratory of TianQin Mission, TianQin Research Center for Gravitational Physics & School of Physics and Astronomy, Frontiers Science Center for TianQin, Gravitational Wave Research Center of CNSA, Sun Yat-sen University (Zhuhai Campus), Zhuhai, Guangdong 519082, China
  • show less
    DOI: 10.12086/oee.2024.230211 Cite this Article
    Jian Luo, Jie Song, Sijun Fang, Fanle Kong, Yong Yan. Decoupling study and noise analysis of multi-degree-of-freedom deformation measurement method for space gravitational wave detection telescope[J]. Opto-Electronic Engineering, 2024, 51(2): 230211 Copy Citation Text show less

    Abstract

    The space gravitational wave telescope is a key payload of gravitational wave detection satellites, responsible for both beam expansion and compression. Optical path stability is a crucial indicator for the telescope, closely related to its structural stability. To meet the stringent requirements for ultra-high optical path stability and structural stability in gravitational wave detection missions, it is necessary to investigate the measurement of structural deformations in the telescope. This paper presents a study on multi-degree of freedom deformation measurement for space gravitational wave telescopes, focusing on addressing the coupling issues in multi-degree of freedom measurement and conducting a detailed analysis of error sources. During the development phase of the space gravitational wave telescope, this measurement method is expected to meet the demands for multi-degree of freedom deformation measurement, providing data feedback on multi-degree of freedom deformations for telescope design and offering guidance for optical path stability research.
    Jian Luo, Jie Song, Sijun Fang, Fanle Kong, Yong Yan. Decoupling study and noise analysis of multi-degree-of-freedom deformation measurement method for space gravitational wave detection telescope[J]. Opto-Electronic Engineering, 2024, 51(2): 230211
    Download Citation