• Chinese Journal of Lasers
  • Vol. 48, Issue 8, 0802012 (2021)
Xingwen Zhou, Jianing Liao, Yu Yao, Hui Kang, Wei Guo, and Peng Peng*
Author Affiliations
  • School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China
  • show less
    DOI: 10.3788/CJL202148.0802012 Cite this Article Set citation alerts
    Xingwen Zhou, Jianing Liao, Yu Yao, Hui Kang, Wei Guo, Peng Peng. Direct Laser Writing of Micro/Nano Copper Structures and Their Applications[J]. Chinese Journal of Lasers, 2021, 48(8): 0802012 Copy Citation Text show less
    References

    [1] Wang X D, Dong L, Zhang H L et al. Recent progress in electronic skin[J]. Advanced Science, 2, 1500169(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC5115318/

    [2] Nathan A, Ahnood A, Cole M T et al. Flexible electronics: the next ubiquitous platform[J]. Proceedings of the IEEE, 100, 1486-1517(2012). http://ieeexplore.ieee.org/document/6198376

    [3] Kim J, Kim M, Lee M S et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics[J]. Nature Communications, 8, 14997(2017). http://www.ncbi.nlm.nih.gov/pubmed/28447604

    [4] Kim K K, Ha I, Won P et al. Transparent wearable three-dimensional touch by self-generated multiscale structure[J]. Nature Communications, 10, 2582(2019). http://www.ncbi.nlm.nih.gov/pubmed/31197161

    [5] Peng P, Hu A, Gerlich A P et al. Joining of silver nanomaterials at low temperatures: processes, properties, and applications[J]. ACS Applied Materials & Interfaces, 7, 12597-12618(2015). http://www.ncbi.nlm.nih.gov/pubmed/26005792

    [6] Kamyshny A, Magdassi S. Conductive nanomaterials for 2D and 3D printed flexible electronics[J]. Chemical Society Reviews, 48, 1712-1740(2019). http://www.ncbi.nlm.nih.gov/pubmed/30569917

    [7] Li W L, Sun Q Q, Li L Y et al. The rise of conductive copper inks: challenges and perspectives[J]. Applied Materials Today, 18, 100451(2020). http://www.sciencedirect.com/science/article/pii/S2352940719305694

    [8] Sun S D, Zhang X J, Yang Q et al. Cuprous oxide (Cu2O) crystals with tailored architectures: a comprehensive review on synthesis, fundamental properties, functional modifications and applications[J]. Progress in Materials Science, 96, 111-173(2018). http://www.sciencedirect.com/science/article/pii/S0079642518300367

    [9] Zhang Q B, Zhang K L, Xu D G et al. CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications[J]. Progress in Materials Science, 60, 208-337(2014). http://www.sciencedirect.com/science/article/pii/S0079642513000704

    [10] Sun S. Recent advances in hybrid Cu2O-based heterogeneous nanostructures[J]. Nanoscale, 7, 10850-10882(2015). http://www.ncbi.nlm.nih.gov/pubmed/26059894

    [11] Bhanushali S, Ghosh P, Ganesh A et al. 1D copper nanostructures:progress, challenges and opportunities[J]. Small, 11, 1232-1252(2015). http://europepmc.org/abstract/med/25504816

    [12] Choi Y, Seong K D, Piao Y Z et al. Metal: organic decomposition ink for printed electronics[J]. Advanced Materials Interfaces, 6, 1901002(2019). http://onlinelibrary.wiley.com/doi/10.1002/admi.201901002

    [13] Palneedi H, Park J H, Maurya D et al. Laser processing of metal oxides: laser irradiation of metal oxide films and nanostructures: applications and advances[J]. Advanced Materials, 30, 1870094(2018). http://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201870094

    [14] Gao S H, Yu X Y, Song X et al. Compart mentalized out-of-plane alignment of liquid crystals based on femtosecond laser direct writing and its applications[J]. Chinese Journal of Lasers, 46, 0508009(2019).

    [15] Shi Y, Xu B, Wu D et al. Research progress on fabrication of functional microfluidic chips using femtosecond laser direct writing technology[J]. Chinese Journal of Lasers, 46, 1000001(2019).

    [16] Zhao C L, Shah P J, Bissell L J et al. Laser additive nano-manufacturing under ambient conditions[J]. Nanoscale, 11, 16187-16199(2019). http://pubs.rsc.org/en/content/articlelanding/2019/nr/c9nr05350f/unauth

    [17] Kumar R, Singh R K, Singh D P et al. Laser-assisted synthesis, reduction and micro-patterning of graphene:recent progress and applications[J]. Coordination Chemistry Reviews, 342, 34-79(2017). http://www.sciencedirect.com/science/article/pii/S0010854516305124

    [18] Joe D J, Kim S, Park J H et al. Laser-material interactions for flexible applications[J]. Advanced Materials, 29, 1606586(2017). http://dspace.kaist.ac.kr/handle/10203/224616

    [19] Chen Z Y, Fang G, Cao L C et al. Direct writing of silver micro-nanostructures by femtosecond laser tweezer[J]. Chinese Journal of Lasers, 45, 0402006(2018).

    [20] Huang Y X, Chen X P, Yu J B et al. Graphene-based film heater fabricated by laser writing[J]. Materials Letters, 284, 128869(2021). http://www.sciencedirect.com/science/article/pii/S0167577X20315767

    [21] Jin C M, Lee W, Kim D et al. Photothermal convection lithography for rapid and direct assembly of colloidal plasmonic nanoparticles on generic substrates[J]. Small, 14, e1803055(2018). http://onlinelibrary.wiley.com/doi/full/10.1002/smll.201803055

    [22] Rajeeva B B, Wu Z L, Briggs A et al. Direct-write printing: “point-and-shoot” synthesis of metallic ring arrays and surface-enhanced optical spectroscopy[J]. Advanced Optical Materials, 6, 1870038(2018).

    [23] Yamamoto Y, Tokonami S, Iida T et al. Surfactant-controlled photothermal assembly of nanoparticles and microparticles for rapid concentration measurement of microbes[J]. ACS Applied Bio Materials, 2, 1561-1568(2019). http://pubs.acs.org/doi/10.1021/acsabm.8b00838

    [24] Lü C J, Varanakkottu S N, Baier T et al. Controlling the trajectories of nano/micro particles using light-actuated Marangoni flow[J]. Nano Letters, 18, 6924-6930(2018).

    [25] Lin L H, Peng X L, Mao Z M et al. Bubble-pen lithography[J]. Nano Letters, 16, 701-708(2016).

    [26] Armon N, Greenberg E, Layani M et al. Continuous nanoparticle assembly by a modulated photo-induced microbubble for fabrication of micrometric conductive patterns[J]. ACS Applied Materials & Interfaces, 9, 44214-44221(2017). http://www.ncbi.nlm.nih.gov/pubmed/29172418

    [27] Han S, Hong S, Ham J et al. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics[J]. Advanced Materials (Deerfield Beach, Fla.), 26, 5808-5814(2014). http://europepmc.org/abstract/med/24913621

    [28] Yeo J, Hong S, Kim G et al. Laser-induced hydrothermal growth of heterogeneous metal-oxide nanowire on flexible substrate by laser absorption layer design[J]. ACS Nano, 9, 6059-6068(2015). http://pubs.acs.org/doi/10.1021/acsnano.5b01125

    [29] Park J H, Jeong S, Lee E J et al. Transversally extended laser plasmonic welding for oxidation-free copper fabrication toward high-fidelity optoelectronics[J]. Chemistry of Materials, 28, 4151-4159(2016). http://pubs.acs.org/doi/10.1021/acs.chemmater.6b00013

    [30] Lee C, Hahn J W. Calculating the threshold energy of the pulsed laser sintering of silver and copper nanoparticles[J]. Journal of the Optical Society of Korea, 20, 601-606(2016). http://www.researchgate.net/publication/311651905_Calculating_the_Threshold_Energy_of_the_Pulsed_Laser_Sintering_of_Silver_and_Copper_Nanoparticles

    [31] Park J H, Han S, Kim D et al. Plasmonic-tuned flash Cu nanowelding with ultrafast photochemical-reducing and interlocking on flexible plastics[J]. Advanced Functional Materials, 27, 1701138(2017). http://koasas.kaist.ac.kr/handle/10203/224388

    [32] Yeo J, Hong S, Wanit M et al. Rapid,one-step, digital selective growth of ZnO nanowires on 3D structures using laser induced hydrothermal growth[J]. Advanced Functional Materials, 23, 3316-3323(2013).

    [33] Kwon K, Shim J, Lee J O et al. Localized laser-based photohydrothermal synthesis of functionalized metal-oxides[J]. Advanced Functional Materials, 25, 2222-2229(2015). http://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201404215

    [34] Fujii S, Fukano R, Hayami Y et al. Simultaneous formation and spatial patterning of ZnO on ITO surfaces by local laser-induced generation of microbubbles in aqueous solutions of [Zn(NH3)4] 2[J]. ACS Applied Materials & Interfaces, 9, 8413-8419(2017). http://www.ncbi.nlm.nih.gov/pubmed/28217991

    [35] Ren X L, Zheng M L, Jin F et al. Laser direct writing of silver nanowire with amino acids-assisted multiphoton photoreduction[J]. The Journal of Physical Chemistry C, 120, 26532-26538(2016). http://pubs.acs.org/doi/10.1021/acs.jpcc.6b08395

    [36] Liu Y K, Lee M T. Laser direct synthesis and patterning of silver nano/microstructures on a polymer substrate[J]. ACS Applied Materials & Interfaces, 6, 14576-14582(2014). http://pubs.acs.org/doi/10.1021/am503897r

    [37] Yu S Y, Schrodj G, Mougin K et al. Direct laser writing of crystallized TiO2 and TiO2 /carbon microstructures with tunable conductive properties[J]. Advanced Materials, 30, e1805093(2018). http://onlinelibrary.wiley.com/doi/10.1002/adma.201805093

    [38] Yu J H, Kang K T, Hwang J Y et al. Rapid sintering of copper nano ink using a laser in air[J]. International Journal of Precision Engineering and Manufacturing, 15, 1051-1054(2014). http://link.springer.com/article/10.1007/s12541-014-0435-5

    [39] Jeong S, Woo K, Kim D et al. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing[J]. Advanced Functional Materials, 18, 679-686(2008). http://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.200700902

    [40] Kwon J, Cho H, Suh Y D et al. Flexible and transparent Cu electronics by low-temperature acid-assisted laser processing of Cu nanoparticles[J]. Advanced Materials Technologies, 2, 1600222(2017). http://dx.doi.org/10.1002/admt.201600222

    [41] Kang B, Han S, Kim J et al. One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle[J]. The Journal of Physical Chemistry C, 115, 23664-23670(2011). http://pubs.acs.org/doi/10.1021/jp205281a

    [42] Back S, Kang B. Low-cost optical fabrication of flexible copper electrode via laser-induced reductive sintering and adhesive transfer[J]. Optics and Lasers in Engineering, 101, 78-84(2018). http://www.sciencedirect.com/science/article/pii/S0143816617303214

    [43] Han S, Hong S, Yeo J et al. Nanorecycling:monolithic integration of copper and copper oxide nanowire network electrode through selective reversible photothermochemical reduction[J]. Advanced Materials, 27, 6397-6403(2015).

    [44] Bai S, Zhang S G, Zhou W P et al. Laser-assisted reduction of highly conductive circuits based on copper nitrate for flexible printed sensors[J]. Nano-Micro Letters, 9, 1-13(2017).

    [45] Peng P, Li L H, He P et al. One-step selective laser patterning of copper/graphene flexible electrodes[J]. Nanotechnology, 30, 185301(2019). http://www.ncbi.nlm.nih.gov/pubmed/30641487

    [46] Liao J, Guo W, Peng P. Direct laser writing of copper-graphene composites for flexible electronics[J]. Optics and Lasers in Engineering, 142, 106605(2021). http://www.sciencedirect.com/science/article/pii/S0143816621000750

    [47] Zhou X W, Guo W, Zhu Y et al. The laser writing of highly conductive and anti-oxidative copper structures in liquid[J]. Nanoscale, 12, 563-571(2020). http://pubs.rsc.org/en/content/articlelanding/2020/nr/c9nr07248a

    [48] Zhou X W, Guo W, Fu J et al. Laser writing of Cu/CuxO integrated structure on flexible substrate for humidity sensing[J]. Applied Surface Science, 494, 684-690(2019). http://www.sciencedirect.com/science/article/pii/S0169433219321956

    [49] Mizoshiri M, Aoyama K, Uetsuki A et al. Direct writing of copper micropatterns using near-infrared femtosecond laser-pulse-induced reduction of glyoxylic acid copper complex[J]. Micromachines, 10, 401(2019). http://www.researchgate.net/publication/333839219_Direct_Writing_of_Copper_Micropatterns_Using_Near-Infrared_Femtosecond_Laser-Pulse-Induced_Reduction_of_Glyoxylic_Acid_Copper_Complex/download

    [50] Liao J N, Wang X D, Zhou X W et al. Femtosecond laser direct writing of copper microelectrodes[J]. Chinese Journal of Lasers, 46, 1002013(2019).

    [51] Zarzar L D, Swartzentruber B S, Donovan B F et al. Usinglaser-induced thermal voxels to pattern diverse materials at the solid-liquid interface[J]. ACS Applied Materials & Interfaces, 8, 21134-21139(2016). http://europepmc.org/abstract/MED/27491598

    [52] Ryu J, Kim H S, Hahn H T et al. Reactive sintering of copper nanoparticles using intense pulsed light for printed electronics[J]. Journal of Electronic Materials, 40, 42-50(2011). http://link.springer.com/article/10.1007/s11664-010-1384-0

    [53] Wang N, Liu Y, Guo W et al. Low-temperature sintering of silver patterns on polyimide substrate printed with particle-free ink[J]. Nanotechnology, 31, 305301(2020). http://www.researchgate.net/publication/340392516_Low_temperature_sintering_of_silver_patterns_on_polyimide_substrate_printed_with_particle-free_ink

    [54] Noh J, Ha J, Kim D et al. Femtosecond and nanosecond laser sintering of silver nanoparticles on a flexible substrate[J]. Applied Surface Science, 511, 145574(2020). http://www.sciencedirect.com/science/article/pii/S0169433220303305

    [55] Zenou M, Ermak O, Saar A et al. Laser sintering of copper nanoparticles[J]. Journal of Physics D: Applied Physics, 47, 025501(2014). http://smartsearch.nstl.gov.cn/paper_detail.html?id=27002a116f10e79d2e23642289754e16

    [56] Lee J, Lee B, Jeong S et al. Microstructure and electrical property of laser-sintered Cu complex ink[J]. Applied Surface Science, 307, 42-45(2014). http://www.sciencedirect.com/science/article/pii/S0169433214006692

    [57] Min H, Lee B, Jeong S et al. Fabrication of 10 μm-scale conductive Cu patterns by selective laser sintering of Cu complex ink[J]. Optics & Laser Technology, 88, 128-133(2017).

    [58] Zehnder S, Lorenz P, Ehrhardt M et al. Laser-induced processes on the back side of dielectric surfaces using a CuSO4-based absorber liquid[J]. Proceedings of SPIE, 8968, 896812(2014).

    [59] Li W L, Yang Y, Zhang B W et al. Highly densified Cu wirings fabricated from air-stable Cu complex ink with high conductivity, enhanced oxidation resistance, and flexibility[J]. Advanced Materials Interfaces, 5, 1800798(2018). http://onlinelibrary.wiley.com/doi/full/10.1002/admi.201800798

    [60] Zhai H T, Wang R R, Wang X et al. Transparent heaters based on highly stable Cu nanowire films[J]. Nano Research, 9, 3924-3936(2016). http://www.cqvip.com/QK/71233X/201612/671341853.html

    [61] Li W, Li C F, Lang F et al. Self-catalyzed copper-silver complex inks for low-cost fabrication of highly oxidation-resistant and conductive copper-silver hybrid tracks at a low temperature below 100 ℃[J]. Nanoscale, 10, 5254-5263(2018). http://europepmc.org/abstract/MED/29498383

    [62] Yim C, Sandwell A, Park S S et al. Hybrid copper-silver conductive tracks for enhanced oxidation resistance under flash light sintering[J]. ACS Applied Materials & Interfaces, 8, 22369-22373(2016). http://www.ncbi.nlm.nih.gov/pubmed/27514569

    [63] Li W, Hu D, Li L et al. Printable and flexible copper-silver alloy electrodes with high conductivity and ultrahigh oxidation resistance[J]. ACS Applied Materials & Interfaces, 9, 24711-24721(2017). http://europepmc.org/abstract/MED/28675295

    [64] Zhang H, Tian Y H, Wang S et al. Highly stable flexible transparent electrode via rapid electrodeposition coating of Ag-Au alloy on copper nanowires for bifunctional electrochromic and supercapacitor device[J]. Chemical Engineering Journal, 399, 125075(2020). http://www.sciencedirect.com/science/article/pii/S1385894720310676

    [65] Kim T G, Park H J, Woo K et al. Enhanced oxidation-resistant Cu@Ni core-shell nanoparticles for printed flexible electrodes[J]. ACS Applied Materials & Interfaces, 10, 1059-1066(2018).

    [66] Ye D M, Li G Z, Wang G G et al. One-pot synthesis of copper nanowire decorated by reduced graphene oxide with excellent oxidation resistance and stability[J]. Applied Surface Science, 467/468, 158-167(2019).

    [67] Tseng C A, Chen C C, Ulaganathan R K et al. One-step synthesis of antioxidative graphene-wrapped copper nanoparticles on flexible substrates for electronic and electrocatalytic applications[J]. ACS Applied Materials & Interfaces, 9, 25067-25072(2017). http://www.ncbi.nlm.nih.gov/pubmed/28727411

    [68] Xu Y T, Guo Y, Song L X et al. Facile fabrication of reduced graphene oxide encapsulated copper spherical particles with 3D architecture and high oxidation resistance[J]. RSC Advances, 4, 58005-58010(2014). http://www.ingentaconnect.com/content/rsoc/20462069/2014/00000004/00000101/art00086

    [69] Lee S, Hong J, Koo J H et al. Synthesis of few-layered graphene nanoballs with copper cores using solid carbon source[J]. ACS Applied Materials & Interfaces, 5, 2432-2437(2013). http://www.ncbi.nlm.nih.gov/pubmed/23465382/

    [70] Choi D, Pyo Y, Jung S B et al. Application of thetaguchi method to optimize graphene coatings on copper nanoparticles formed using a solid carbon source[J]. Materials Transactions, 57, 1177-1182(2016). http://ci.nii.ac.jp/naid/130005158385

    [71] Li Y K, Zhou X W, Chen J L et al. Laser-patterned copper electrodes for proximity and tactile sensors[J]. Advanced Materials Interfaces, 7, 1901845(2020). http://onlinelibrary.wiley.com/doi/pdf/10.1002/admi.201901845

    [72] Zhang C, Liu S Y, Huang X et al. A stretchable dual-mode sensor array for multifunctional robotic electronic skin[J]. Nano Energy, 62, 164-170(2019). http://www.sciencedirect.com/science/article/pii/S2211285519304525

    [73] Liu Y Q, Zhang Y L, Jiao Z Z et al. Directly drawing high-performance capacitive sensors on copying tissues[J]. Nanoscale, 10, 17002-17006(2018).

    [74] Zhang J H, Feng J, Jia L Y et al. Laser-induced selective metallization on polymer substrates using organocopper for portable electronics[J]. ACS Applied Materials & Interfaces, 11, 13714-13723(2019). http://www.ncbi.nlm.nih.gov/pubmed/30888140

    [75] Rahimi R, Es-haghi S S, Chittiboyina S et al. Laser-enabled processing of stretchable electronics on a hydrolytically degradable hydrogel[J]. Advanced Healthcare Materials, 7, 1800231(2018).

    [76] Khan Y, Thielens A, Muin S et al. A new frontier of printed electronics: flexible hybrid electronics[J]. Advanced Materials, 32, e1905279(2020). http://www.ncbi.nlm.nih.gov/pubmed/31742812

    [77] Xu P P, Liu J J, Liu T et al. Preparation of binder-free CuO/Cu2O/Cu composites: a novel electrode material for supercapacitor applications[J]. RSC Advances, 6, 28270-28278(2016). http://www.researchgate.net/publication/297604475_Preparation_of_binder-free_of_CuOCu2OCu_composites_A_novel_electrode_material_for_supercapacitor_applications

    [78] Cai J G, Watanabe A, Lü C et al. Laser direct writing of carbon/Au composite electrodes for high-performance micro-supercapacitors[J]. Proceedings of SPIE, 10092, 100920P(2017). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2605558

    [79] Tiemann M. Porous metal oxides as gas sensors[J]. Chemistry-A European Journal, 13, 8376-8388(2007). http://europepmc.org/abstract/med/17721888

    [80] Wang Z Y, Xiao Y, Cui X B et al. Humidity-sensing properties of urchinlike CuO nanostructures modified by reduced graphene oxide[J]. ACS Applied Materials & Interfaces, 6, 3888-3895(2014). http://europepmc.org/abstract/med/24456151

    [81] Noothongkaew S, Thumthan O, An K S et al. UV-Photodetectors based on CuO/ZnO nanocomposites[J]. Materials Letters, 233, 318-323(2018). http://www.sciencedirect.com/science/article/pii/S0167577X18314009

    [82] Hsu C L, Tsai J Y, Hsueh T J et al. Ethanol gas and humidity sensors of CuO/Cu2O composite nanowires based on a Cu through-silicon via approach[J]. Sensors and Actuators B: Chemical, 224, 95-102(2016). http://www.sciencedirect.com/science/article/pii/S0925400515304846

    [83] Arakane S, Mizoshiri M, Sakurai J et al. Direct writing of three-dimensional Cu-based thermal flow sensors using femtosecond laser-induced reduction of CuO nanoparticles[J]. Journal of Micromechanics and Microengineering, 27, 055013(2017). http://ci.nii.ac.jp/naid/120006318707

    [84] Mizoshiri M, Ito Y, Arakane S et al. Direct fabrication of Cu/Cu2O composite micro-temperature sensor using femtosecond laser reduction patterning[J]. Japanese Journal of Applied Physics, 55, 06GP05(2016).

    Xingwen Zhou, Jianing Liao, Yu Yao, Hui Kang, Wei Guo, Peng Peng. Direct Laser Writing of Micro/Nano Copper Structures and Their Applications[J]. Chinese Journal of Lasers, 2021, 48(8): 0802012
    Download Citation