• Matter and Radiation at Extremes
  • Vol. 6, Issue 2, 026904 (2021)
M. J.-E. Manuel1、a), B. Khiar2, G. Rigon3, B. Albertazzi3, S. R. Klein4, F. Kroll5, F. -E. Brack5、6, T. Michel3, P. Mabey3, S. Pikuz7, J. C. Williams1, M. Koenig3, A. Casner8, and C. C. Kuranz4
Author Affiliations
  • 1General Atomics, San Diego, California 92121, USA
  • 2University of Chicago, Chicago, Illinois 60637, USA
  • 3Laboratoire pour l’utilisation des lasers intenses, 91128 Palaiseau Cedex, France
  • 4University of Michigan, Ann Arbor, Michigan 48109, USA
  • 5Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
  • 6Technische Universität Dresden, 01062 Dresden, Germany
  • 7National Research Nuclear University, Moscow 115409, Russia
  • 8Centre lasers intenses et applications, 33405 Talence Cedex, France
  • show less
    DOI: 10.1063/5.0025374 Cite this Article
    M. J.-E. Manuel, B. Khiar, G. Rigon, B. Albertazzi, S. R. Klein, F. Kroll, F. -E. Brack, T. Michel, P. Mabey, S. Pikuz, J. C. Williams, M. Koenig, A. Casner, C. C. Kuranz. On the study of hydrodynamic instabilities in the presence of background magnetic fields in high-energy-density plasmas[J]. Matter and Radiation at Extremes, 2021, 6(2): 026904 Copy Citation Text show less
    References

    [1] A. Thiessen, J. Nuckolls, L. Wood et al. Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nature, 239, 139(1972).

    [2] D. T. Casey, O. A. Hurricane, D. A. Callahan et al. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343(2014).

    [3] A. R. Miles. The blast-wave-driven instability as a vehicle for understanding supernova explosion structure. Astrophys. J., 696, 498(2009).

    [4] C. M. Huntington, H.-S. Park, C. C. Kuranz et al. How high energy fluxes may affect Rayleigh-Taylor instability growth in young supernova remnants. Nat. Commun., 9, 1564(2018).

    [5] J. J. Hester, P. A. Scowen, J. M. Stone et al. WFPC2 studies of the Crab Nebula III magnetic Rayleigh-Taylor instabilities and the origin of the filaments. Astrophys. J., 456, 225(1996).

    [6] B. I. Jun. Interaction of a pulsar wind with the expanding supernova remnant. Astrophys. J., 499, 282(1998).

    [7] J. J. Hester. The Crab Nebula: An astrophysical Chimera. Annu. Rev. Astron. Astrophys., 46, 127(2008).

    [8] G. Taylor. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes I. Proc. R. Soc. London, 201, 192(1950).

    [9] R. Betti, V. N. Goncharov, R. L. McCrory et al. Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion. Phys. Plasmas, 5, 1446(1998).

    [10] K. Mima, H. Takabe, L. Montierth et al. Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma. Phys. Fluids, 28, 3676(1985).

    [11] C. Kozma, T. K. Nymark, C. Fransson. X-ray emission from radiative shocks in type II supernovae. Astron. Astrophys., 449, 171(2006).

    [12] G. Dimonte. Spanwise homogeneous buoyancy-drag model for Rayleigh–Taylor mixing and experimental evaluation. Phys. Plasmas, 7, 2255(2000).

    [13] B.-I. Jun, J. M. Stone, M. L. Norman. A numerical study of Rayleigh-Taylor instability in magnetic fluids. Astrophys. J., 453, 332(1995).

    [14] B. K. Shivamoggi. Rayleigh-Taylor instability of a compressible plasma in a horizontal magnetic field. Z. Angew. Math. Phys., 33, 693(1982).

    [15] V. L. Trimble. Motions and structure of the filamentary envelope of the Crab Nebula(1968).

    [16] R. Bandiera, E. Amato, N. Bucciantini et al. Magnetic Rayleigh-Taylor instability for pulsar wind Nebulae in expanding supernova remnants. Astron. Astrophys., 423, 253(2004).

    [17] T. Gardiner, J. M. Stone. The magnetic Rayleigh-Taylor instability in three dimensions. Astrophys. J., 671, 1726(2007).

    [18] C. M. Huntington, M. Trantham, A. Shimony et al. Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock. Phys. Plasmas, 25, 052118(2018).

    [19] A. Casner, B. Albertazzi, G. Rigon et al. Rayleigh-Taylor instability experiments on the LULI2000 laser in scaled conditions for young supernova remnants. Phys. Rev. E, 100(2019).

    [20] F. W. Doss, J. L. Kline, K. A. Flippo et al. Development of a Big Area BackLighter for high energy density experiments. Rev. Sci. Instrum., 85, 093501(2014).

    [21] M. Koenig, S. Baton, E. Brambrink et al. Short-pulse laser-driven x-ray radiography. High Power Laser Sci. Eng., 4, e30(2016).

    [22] A. Ciardi, B. Albertazzi, J. Béard et al. Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields. Rev. Sci. Instrum., 84, 043505(2013).

    [23] M. G. Haines, A. Nishiguchi, T. Yabe. Nernst effect in laser-produced plasmas. Phys. Fluids, 28, 3683(1985).

    [24] M. Fatenejad, N. Flocke, P. Tzeferacos et al. FLASH MHD simulations of experiments that study shock-generated magnetic fields. High Energy Density Phys., 17, Part A, 24(2015).

    [25]

    [26] A. Bernardinello, D. Batani, J. R. Davies et al. Explanations for the observed increase in fast electron penetration in laser shock compressed materials. Phys. Rev. E, 61, 5725(2000).

    [27] T. Mattsson, M. P. Desjarlais. Phase diagram and electrical conductivity of high energy-density water from density functional theory. Phys. Rev. Lett., 97, 017801(2006).

    [28] A. B. Sefkow, C. C. Kuranz, M. J.-E. Manuel et al. Magnetized disruption of inertially confined plasma flows. Phys. Rev. Lett., 122, 225001(2019).

    [29] Apparent regions of reduced opacity at the leading edge of the flat interface is likely due to bandpass filtering, and does not hinder the ability to determine the interface location.

    [30] D. Arnett, N. C. Swisher, C. C. Kuranz et al. Rayleigh-Taylor mixing in supernova experiments. Phys. Plasmas, 22, 102707(2015).

    [31] The bright vertical lines are artifacts due to the x-ray radiography diagnostic. The initial line at 10ns is when the radiograph was taken, and subsequent lines come from reflections in the chamber propagating down the collection optics on to the streak camera.

    [32] Assuming a characteristic fluid velocity of ∼40 km/s.

    [33] B. Fryxell, C. C. Kuranz, R. P. Drake et al. The possible effects of magnetic fields on laser experiments of Rayleigh-Taylor instabilities. High Energy Density Phys., 6, 162(2010).

    [34] J. Kane, R. P. Drake, D. D. Ryutov et al. Similarity criteria for the laboratory simulation of supernova hydrodynamics. Astrophys. J., 518, 821(1999).

    [35] R. P. Drake. High-Energy-Density Physics: Foundation of Inertial Fusion and Experimental Astrophysics(2018).

    [36] R. A. Fesen, R. P. Kirshner. The Crab Nebula I. Spectrophotometry of the filaments. Astrophys. J., 258, 1(1982).

    M. J.-E. Manuel, B. Khiar, G. Rigon, B. Albertazzi, S. R. Klein, F. Kroll, F. -E. Brack, T. Michel, P. Mabey, S. Pikuz, J. C. Williams, M. Koenig, A. Casner, C. C. Kuranz. On the study of hydrodynamic instabilities in the presence of background magnetic fields in high-energy-density plasmas[J]. Matter and Radiation at Extremes, 2021, 6(2): 026904
    Download Citation