• Laser & Optoelectronics Progress
  • Vol. 58, Issue 9, 0900001 (2021)
Guocui Wang1、2, Bin Hu2, and Yan Zhang1、*
Author Affiliations
  • 1Department of Physics, Beijing Key Laboratory for Metamaterials and Devices, Key Laboratory for Terahertz Optoelectronics, Ministry of Education, Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing 100048, China
  • 2School of Optics and Photonics, Beijing Engineering Research Center for Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.3788/LOP202158.0900001 Cite this Article Set citation alerts
    Guocui Wang, Bin Hu, Yan Zhang. Dynamic Metasurface Design and Functional Devices[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0900001 Copy Citation Text show less
    References

    [1] Pendry J B, Holden A J, Stewart W J et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 76, 4773-4776(1996).

    [2] Walser R M. Metamaterials: what are they? what are they good for?[EB/OL]. https://ui.adsabs.harvard.edu/abs/2000APS.MAR.Z5001W/abstract

    [3] Valentine J, Zhang S, Zentgraf T et al. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature, 455, 376-379(2008).

    [4] Shalaev V M, Cai W S, Chettiar U K et al. Negative index of refraction in optical metamaterials[J]. Optics Letters, 30, 3356-3358(2005).

    [5] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 292, 77-79(2001).

    [6] Schurig D, Mock J J, Justice B J et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 314, 977-980(2006).

    [7] Leonhardt U. Invisibility cup[J]. Nature Photonics, 1, 207-208(2007).

    [8] Cai W S, Chettiar U K, Kildishev A V et al. Optical cloaking with metamaterials[J]. Nature Photonics, 1, 224-227(2007).

    [9] Kisel V N, Lagarkov A N. Near-perfect absorption by a flat metamaterial plate[J]. Physical Review E, 76, 065601(2007).

    [10] Ding P, Liang E J, Cai G W et al. Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials[J]. Journal of Optics, 13, 075005(2011).

    [11] Feng S M, Halterman K. Coherent perfect absorption in epsilon-near-zero metamaterials[J]. Physical Review B, 86, 165103(2012).

    [12] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [13] Li Z Y, Palacios E, Butun S et al. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting[J]. Nano Letters, 15, 1615-1621(2015).

    [14] Li Y F, Zhang J Q, Zhang Y D et al. Wideband, co-polarization anomalous reflection metasurface based on low-Q resonators[J]. Applied Physics A, 122, 851(2016).

    [15] Sun S, He Q, Xiao S et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 11, 426-431(2012).

    [16] Wang S, Zhao F, Wang X K et al. Comprehensive imaging of terahertz surface plasmon polaritons[J]. Optics Express, 22, 16916-16924(2014).

    [17] Wang S, Wang X K, Kan Q et al. Circular polarization analyzer with polarization tunable focusing of surface plasmon polaritons[J]. Applied Physics Letters, 107, 243504(2015).

    [18] Jiang X Y, Ye J S, He J W et al. An ultrathin terahertz lens with axial long focal depth based on metasurfaces[J]. Optics Express, 21, 30030-30038(2013).

    [19] Wang B, Wu X, Zhang Y. Multiple-wavelength focusing and demultiplexing plasmonic lens based on asymmetric nanoslit arrays[J]. Plasmonics, 8, 1535-1541(2013).

    [20] Ho J S, Qiu B, Tanabe Y et al. Planar immersion lens with metasurfaces[J]. Physical Review B, 91, 125145(2015).

    [21] Pfeiffer C, Grbic A. Controlling vector Bessel beams with metasurfaces[J]. Physical Review Applied, 2, 044012(2014).

    [22] He J, Wang X, Hu D et al. Generation and evolution of the terahertz vortex beam[J]. Optics Express, 21, 20230-20239(2013).

    [23] Guo J Y, Wang X K, He J W et al. Generation of radial polarized Lorentz beam with single layer metasurface[J]. Advanced Optical Materials, 6, 1700925(2018).

    [24] Wang B, Quan B, He J et al. Wavelength de-multiplexing metasurface hologram[J]. Scientific Reports, 6, 35657(2016).

    [25] Kuznetsov S A, Astafev M A, Beruete M et al. Planar holographic metasurfaces for terahertz focusing[J]. Scientific Reports, 5, 7738(2015).

    [26] Huang L L, Mühlenbernd H, Li X W et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 27, 6444-6449(2015).

    [27] Miao Z Q, Wu Q, Li X et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces[J]. Physical Review X, 5, 041027(2015).

    [28] Lü T T, Zhu Z, Shi J H et al. Optically controlled background-free terahertz switching in chiral metamaterial[J]. Optics Letters, 39, 3066-3069(2014).

    [29] Wen Q Y, Zhang H W, Yang Q H et al. A tunable hybrid metamaterial absorber based on vanadium oxide films[J]. Journal of Physics D: Applied Physics, 45, 235106(2012).

    [30] Lee S, Kim S, Kim T T et al. Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts[J]. Advanced Materials, 24, 3491-3497(2012).

    [31] Sun S L, He Q, Hao J M et al. Electromagnetic metasurfaces: physics and applications[J]. Advances in Optics and Photonics, 11, 380-479(2019).

    [32] He Q, Sun S, Zhou L. Tunable/reconfigurable metasurfaces: physics and applications[J]. Research, 2019, 1849272(2019).

    [33] Bao L, Cui T J. Tunable, reconfigurable, and programmable metamaterials[J]. Microwave and Optical Technology Letters, 62, 9-32(2020).

    [34] Hu Z, Xu T, Tang R et al. Geometric-phase metasurfaces: from physics to applications[J]. Laser & Optoelectronics Progress, 56, 202408(2019).

    [35] Zhao J, Cheng Q, Chen J et al. A tunable metamaterial absorber using varactor diodes[J]. New Journal of Physics, 15, 043049(2013).

    [36] Xu H X, Sun S L, Tang S W et al. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces[J]. Scientific Reports, 6, 27503(2016).

    [37] Mao R Q, Wang G M, Cai T et al. Tunable metasurface with controllable polarizations and reflection/transmission properties[J]. Journal of Physics D: Applied Physics, 53, 155102(2020).

    [38] Li S Q, Xu X W, Veetil R M et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J]. Science, 364, 1087-1090(2019).

    [39] Chen H T, Padilla W J, Zide J M O et al. Active terahertz metamaterial devices[J]. Nature, 444, 597-600(2006).

    [40] Gabbay A, Brener I. Theory and modeling of electrically tunable metamaterial devices using inter-subband transitions in semiconductor quantum wells[J]. Optics Express, 20, 6584-6597(2012).

    [41] Sarma R, Campione S, Goldflam M et al. A metasurface optical modulator using voltage-controlled population of quantum well states[J]. Applied Physics Letters, 113, 201101(2018).

    [42] Zhang Y X, Zhao Y C, Liang S X et al. Large phase modulation of THz wave via an enhanced resonant active HEMT metasurface[J]. Nanophotonics, 8, 153-170(2018).

    [43] Zhang Y X, Qiao S, Liang S X et al. Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure[J]. Nano Letters, 15, 3501-3506(2015).

    [44] Sun Y F, Sun J D, Zhou Y et al. Room temperature GaN/AlGaN self-mixing terahertz detector enhanced by resonant antennas[J]. Applied Physics Letters, 98, 252103(2011).

    [45] Brar V W, Jang M S, Sherrott M et al. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators[J]. Nano Letters, 13, 2541-2547(2013).

    [46] Fang Z Y, Wang Y M, Schlather A E et al. Active tunable absorption enhancement with graphene nanodisk arrays[J]. Nano Letters, 14, 299-304(2014).

    [47] Dai S, Ma Q, Liu M K et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial[J]. Nature Nanotechnology, 10, 682-686(2015).

    [48] Lee S H, Choi M, Kim T T et al. Switching terahertz waves with gate-controlled active graphene metamaterials[J]. Nature Materials, 11, 936-941(2012).

    [49] Valmorra F, Scalari G, Maissen C et al. Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial[J]. Nano Letters, 13, 3193-3198(2013).

    [50] Liu P Q, Luxmoore I J, Mikhailov S A et al. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons[J]. Nature Communications, 6, 8969(2015).

    [51] Huang Y W, Lee H W H, Sokhoyan R et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Letters, 16, 5319-5325(2016).

    [52] Padilla W J, Taylor A J, Highstrete C et al. Dynamical electric and magnetic metamaterial response at terahertz frequencies[J]. Physical Review Letters, 96, 107401(2006).

    [53] Zhou Q L, Shi Y L, Wang A H et al. Ultrafast optical modulation of terahertz metamaterials[J]. Journal of Optics, 13, 125102(2011).

    [54] Chen H T, Azad A K et al. Experimental demonstration of frequency-agile terahertz metamaterials[J]. Nature Photonics, 2, 295-298(2008).

    [55] Shen N H, Massaouti M, Gokkavas M et al. Optically implemented broadband blueshift switch in the terahertz regime[J]. Physical Review Letters, 106, 037403(2011).

    [56] Gu J Q, Singh R, Liu X J et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nature Communications, 3, 1151(2012).

    [57] Wang G C, Zhang J N, Zhang B et al. Photo-excited terahertz switch based on composite metamaterial structure[J]. Optics Communications, 374, 64-68(2016).

    [58] Zylbersztejn A, Mott N F. Metal-insulator transition in vanadium dioxide[J]. Physical Review B, 11, 4383-4395(1975).

    [59] Liu M, Hwang H Y, Tao H et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial[J]. Nature, 487, 345-348(2012).

    [60] Seo M, Kyoung J, Park H et al. Active terahertz nanoantennas based on VO2 phase transition[J]. Nano Letters, 10, 2064-2068(2010).

    [61] He J W, Xie Z W, Sun W F et al. Terahertz tunable metasurface lens based on vanadium dioxide phase transition[J]. Plasmonics, 11, 1285-1290(2016).

    [62] Liu X B, Wang Q, Zhang X Q et al. Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface[J]. Advanced Optical Materials, 7, 1900175(2019).

    [63] Wen Q Y, Zhang H W, Yang Q H et al. Terahertz metamaterials with VO2 cut-wires for thermal tunability[J]. Applied Physics Letters, 97, 021111(2010).

    [64] Wang T, He J W, Guo J Y et al. Thermally switchable terahertz wavefront metasurface modulators based on the insulator-to-metal transition of vanadium dioxide[J]. Optics Express, 27, 20347-20357(2019).

    [65] Ding F, Zhong S M, Bozhevolnyi S I. Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies[J]. Advanced Optical Materials, 6, 1701204(2018).

    [66] Choi S B, Kyoung J S, Kim H S et al. Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film[J]. Applied Physics Letters, 98, 071105(2011).

    [67] Chen S C, Du L H, Meng K et al. Terahertz wave near-field compressive imaging with a spatial resolution of over λ/100[J]. Optics Letters, 44, 21-24(2019).

    [68] Fan F, Gu W H, Chen S et al. State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping[J]. Optics Letters, 38, 1582-1584(2013).

    [69] Liu X L, Padilla W J. Dynamic manipulation of infrared radiation with MEMS metamaterials[J]. Advanced Optical Materials, 1, 559-562(2013).

    [70] Han Z L, Kohno K, Fujita H et al. MEMS reconfigurable metamaterial for terahertz switchable filter and modulator[J]. Optics Express, 22, 21326-21339(2014).

    [71] Zheludev N I, Plum E. Reconfigurable nanomechanical photonic metamaterials[J]. Nature Nanotechnology, 11, 16-22(2016).

    [72] Wang Q G, Mao D P, Liu P et al. NEMS-based infrared metamaterial via tuning nanocantilevers within complementary split ring resonators[J]. Journal of Microelectromechanical Systems, 26, 1371-1380(2017).

    [73] Kasirga T S, Ertas Y N, Bayindir M. Microfluidics for reconfigurable electromagnetic metamaterials[J]. Applied Physics Letters, 95, 214102(2009).

    [74] Ghosh S, Lim S. Fluidically switchable metasurface for wide spectrum absorption[J]. Scientific Reports, 8, 10169(2018).

    [75] Pryce I M, Aydin K, Kelaita Y A et al. Highly strained compliant optical metamaterials with large frequency tunability[J]. Nano Letters, 10, 4222-4227(2010).

    [76] Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 16, 2818-2823(2016).

    [77] Reeves J B, Jayne R K, Stark T J et al. Tunable infrared metasurface on a soft polymer scaffold[J]. Nano Letters, 18, 2802-2806(2018).

    [78] Wu P C, Zhu W M, Shen Z X et al. Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface[J]. Advanced Optical Materials, 5, 1600938(2017).

    [79] Arbabi E, Arbabi A, Kamali S M et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 9, 812(2018).

    [80] Cui Y, Zheng G X, Chen M et al. Reconfigurable continuous-zoom metalens in visible band[J]. Chinese Optics Letters, 17, 111603(2019).

    [81] Wei Y X, Wang Y X, Feng X et al. Compact optical polarization-insensitive zoom metalens doublet[J]. Advanced Optical Materials, 8, 2000142(2020).

    [82] Bernet S, Ritsch-Marte M. Adjustable refractive power from diffractive Moiré elements[J]. Applied Optics, 47, 3722-3730(2008).

    [83] Han J G, Lakhtakia A, Qiu C W. Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability[J]. Optics Express, 16, 14390-14396(2008).

    [84] Kang L, Zhao Q, Zhao H J et al. Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods[J]. Optics Express, 16, 8825-8834(2008).

    [85] Valente J, Ou J Y, Plum E et al. Reconfiguring photonic metamaterials with currents and magnetic fields[J]. Applied Physics Letters, 106, 111905(2015).

    [86] Zanotto S, Lange C, Maag T et al. Magneto-optic transmittance modulation observed in a hybrid graphene-split ring resonator terahertz metasurface[J]. Applied Physics Letters, 107, 121104(2015).

    [87] Qin J, Deng L J, Kang T T et al. Switching the optical chirality in magnetoplasmonic metasurfaces using applied magnetic fields[J]. ACS Nano, 14, 2808-2816(2020).

    [88] Duan X Y, Kamin S, Liu N. Dynamic plasmonic colour display[J]. Nature Communications, 8, 14606(2017).

    [89] Yu P, Li J X, Li X et al. Generation of switchable singular beams with dynamic metasurfaces[J]. ACS Nano, 13, 7100-7106(2019).

    [90] Li J X, Chen Y Q, Hu Y Q et al. Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display[J]. ACS Nano, 14, 7892-7898(2020).

    [91] Shen N H, Kafesaki M, Koschny T et al. Broadband blueshift tunable metamaterials and dual-band switches[J]. Physical Review B, 79, 161102(2009).

    [92] Jiang L H, Wang F Q, Liang R S et al. Tunable terahertz filters based on graphene plasmonic all-dielectric metasurfaces[J]. Plasmonics, 13, 525-530(2018).

    [93] Emani N K, Chung T F, Ni X J et al. Electrically tunable damping of plasmonic resonances with graphene[J]. Nano Letters, 12, 5202-5206(2012).

    [94] Rout S, Sonkusale S. Wireless multi-level terahertz amplitude modulator using active metamaterial-based spatial light modulation[J]. Optics Express, 24, 14618-14631(2016).

    [95] Hu D, Liu C P, Zhang Y. Active control of terahertz multimode resonance transmission through subwavelength metal annular aperture arrays[J]. Journal of Modern Optics, 60, 1548-1553(2013).

    [96] Yuan Y H, Chen X Y, Hu F R et al. Terahertz amplitude modulator based on metasurface/ion-gel/graphene hybrid structure[J]. Chinese Journal of Lasers, 46, 0614016(2019).

    [97] Yoon G, So S, Kim M et al. Electrically tunable metasurface perfect absorber for infrared frequencies[J]. Nano Convergence, 4, 36(2017).

    [98] Zou Y X, Cao J, Gong X et al. Ultrathin and electrically tunable metamaterial with nearly perfect absorption in mid-infrared[J]. Applied Sciences-Basel, 9, 3358(2019).

    [99] Seren H R, Keiser G R, Cao L Y et al. Optically modulated multiband terahertz perfect absorber[J]. Advanced Optical Materials, 2, 1221-1226(2014).

    [100] Forouzmand A, Salary M M, Inampudi S et al. A tunable multigate indium-tin-oxide-assisted all-dielectric metasurface[J]. Advanced Optical Materials, 6, 1701275(2018).

    [101] Tavakol M R, Rahmani B, Khavasi A. Tunable polarization converter based on one-dimensional graphene metasurfaces[J]. Journal of the Optical Society of America B, 35, 2574-2581(2018).

    [102] Zhao X G, Schalch J, Zhang J D et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies[J]. Optica, 5, 303-310(2018).

    [103] Zhang Y, Feng Y J, Jiang T et al. Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial[J]. Carbon, 133, 170-175(2018).

    [104] Sasaki T, Nishie Y, Kambayashi M et al. Active terahertz polarization converter using a liquid crystal-embedded metal mesh[J]. IEEE Photonics Journal, 11, 5901007(2019).

    [105] Mao R Q, Wang G M, Cai T et al. Tunable metasurface with controllable polarizations and reflection/transmission properties[J]. Journal of Physics D: Applied Physics, 53, 155102(2020).

    [106] Xu H X, Ma S J, Luo W J et al. Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces[J]. Applied Physics Letters, 109, 193506(2016).

    [107] Callewaert F, Velev V, Jiang S Z et al. Inverse-designed stretchable metalens with tunable focal distance[J]. Applied Physics Letters, 112, 091102(2018).

    [108] Liu W G, Hu B, Huang Z D et al. Graphene-enabled electrically controlled terahertz meta-lens[J]. Photonics Research, 6, 703-708(2018).

    [109] Colburn S, Zhan A L, Majumdar A. Varifocal zoom imaging with large area focal length adjustable metalenses[J]. Optica, 5, 825-831(2018).

    [110] Afridi A, Canet-Ferrer J, Philippet L et al. Electrically driven varifocal silicon metalens[J]. ACS Photonics, 5, 4497-4503(2018).

    [111] Bai W, Yang P, Huang J et al. Near-infrared tunable metalens based on phase change material Ge2Se2Te5[J]. Scientific Reports, 9, 5368(2019).

    [112] Yilmaz N, Ozdemir A, Ozer A et al. Rotationally tunable polarization-insensitive single and multifocal metasurface[J]. Journal of Optics, 21, 045105(2019).

    [113] Wang X K, Xie Z W, Sun W F et al. Focusing and imaging of a virtual all-optical tunable terahertz Fresnel zone plate[J]. Optics Letters, 38, 4731-4734(2013).

    [114] Cheng H, Chen S, Yu P et al. Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces[J]. Advanced Optical Materials, 3, 1744-1749(2015).

    [115] Su X Q, Ouyang C M, Xu N N et al. Active metasurface terahertz deflector with phase discontinuities[J]. Optics Express, 23, 27152-27158(2015).

    [116] Xu H X, Wang G M, Cai T et al. Tunable Pancharatnam-Berry metasurface for dynamical and high-efficiency anomalous reflection[J]. Optics Express, 24, 27836-27848(2016).

    [117] Cong L, Srivastava Y K, Zhang H et al. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting[J]. Science & Applications, 7, 28(2018).

    [118] Du Z Y, Hu B, Liu W G et al. Tunable beam deflector by mutual motion of cascaded bilayer metasurfaces[J]. Journal of Optics, 21, 115101(2019).

    [119] Wang Y, Zhang S H, Shen Y et al. Manipulation on amplitude of anomalous refraction in staggered terahertz V-shaped metasurface[J]. Acta Optica Sinica, 40, 0713001(2020).

    [120] Guo X Y, Pu M B, Guo Y H et al. Flexible and tunable dielectric color meta-hologram[J]. Plasmonics, 15, 217-223(2020).

    [121] Xie Z W, He J W, Wang X K et al. Generation of terahertz vector beams with a concentric ring metal grating and photo-generated carriers[J]. Optics Letters, 40, 359-362(2015).

    [122] Cui T J, Qi M Q, Wan X et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 3(2014).

    [123] Guo J Y, Wang T, Zhao H et al. Reconfigurable terahertz metasurface pure phase holograms[J]. Advanced Optical Materials, 7, 1801696(2019).

    [124] Zhu W M, Song Q H, Yan L B et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial[J]. Advanced Materials, 27, 4739-4743(2015).

    [125] Yan L B, Zhu W M, Wu P C et al. Adaptable metasurface for dynamic anomalous reflection[J]. Applied Physics Letters, 110, 201904(2017).

    [126] She A, Zhang S, Shian S et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J]. Science Advances, 4(2018).

    [127] Yan L B, Zhu W M, Karim M F et al. Arbitrary and independent polarization control in situ via a single metasurface[J]. Advanced Optical Materials, 6, 1800728(2018).

    [128] Zhang X G, Jiang W X, Jiang H L et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nature Electronics, 3, 165-171(2020).

    [129] Li Y B, Li L L, Xu B B et al. Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging[J]. Scientific Reports, 6, 23731(2016).

    [130] Li L, Cui T J, Ji W et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 8, 197(2017).

    [131] Li L, Ruan H, Liu C et al. Machine-learning reprogrammable metasurface imager[J]. Nature Communications, 10, 1082(2019).

    [132] Dai J Y, Zhao J, Cheng Q et al. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface[J]. Science & Applications, 7, 90(2018).

    [133] Zhao J, Yang X, Dai J Y et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 6, 231-238(2019).

    [134] Cui T J, Liu S, Bai G D et al. Direct transmission of digital message via programmable coding metasurface[J]. Research, 2019, 2584509(2019).

    Guocui Wang, Bin Hu, Yan Zhang. Dynamic Metasurface Design and Functional Devices[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0900001
    Download Citation