[1] E. Hultman, K. Soderlund, J. A. Timmons, G. Cederblad, P. L. Greenha?, "Muscle creatine loading in men," J. Appl. Physiol. 81, 232–237 (1996).
[2] C. S. Pundir, S. Yadav, A. Kumar, "Creatinine sensors," Trac-Trends Anal. Chem. 50, 42–52 (2013).
[3] D. S. Ciou, P. H. Wu, Y. C. Huang, M. C. Yang, S. Y. Lee, C. Y. Lin, "Colorimetric and amperometric detection of urine creatinine based on the ABTS radical cation modified electrode," Sens. Actuators B Chem. 314, 128034 (2020).
[4] S. Kumaravel, S. H. Wu, G. Z. Chen, S. T. Huang, C. M. Lin, Y. C. Lee, C. H. Chen, "Development of ratiometric electrochemical molecular switches to assay endogenous formaldehyde in live cells, whole blood and creatinine in saliva," Biosens. Bioelectron. 171, 112720 (2021).
[5] A. Benkert, F. Scheller, W. Schossler, C. Hentschel, B. Micheel, O. Behrsing, G. Scharte, W. St€ocklein, A. Warsinke, "Development of a creatinine ELISA and an amperometric antibody-based creatinine sensor with a detection limit in the nanomolar range," Anal. Chem. 72, 916–921 (2000).
[6] W. Zhu, B. Y. Wen, L. J. Jie, X. D. Tian, Z. L. Yang, P. M. Radjenovic, S. Y. Luo, Z. Q. Tian, J. F. Li, "Rapid and low-cost quantitative detection of creatinine in human urine with a portable Raman spectrometer," Biosens. Bioelectron. 154, 112067 (2020).
[7] M. Fernandez-Fernandez, P. Rodriguez-Gonzalez, M. E. Anon Alvarez, F. Rodriguez, F. V. Menendez, J. I. Garcia Alonso, "Simultaneous determination of creatinine and creatine in human serum by doublespike isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS)," Anal. Chem. 87, 3755–3763 (2015).
[8] E. M. Leung, W. Chan, "A novel reversed-phase HPLC method for the determination of urinary creatinine by pre-column derivatization with ethyl chloroformate: Comparative studies with the standard Ja?e and isotope-dilution mass spectrometric assays," Anal. Bioanal. Chem. 406, 1807–1812 (2014).
[9] M. Fernandez-Fernandez, A. Gonzalez-Antuna, P. Rodriguez-Gonzalez, M. E. Anon Alvarez, F. V. Alvarez, J. I. Garcia Alonso, "Development of an isotope dilution GC-MS procedure for the routine determination of creatinine in complex serum samples," Clin. Chim. Acta. 431, 96–102 (2014).
[10] S. Qu, Q. Cao, J. Ma, Q. Jia, "A turn-on fluorescence sensor for creatinine based on the quinolinemodi fied metal organic frameworks," Talanta 219, 121280 (2020).
[11] X. Liu, J. Ma, P. Jiang, J. Shen, R. Wang, Y. Wang, G. Tu, "Large-scale flexible surface-enhanced Raman scattering (SERS) sensors with high stability and signal homogeneity," ACS Appl. Mater. Interfaces 12, 45332–45341 (2020).
[12] H. Wang, X. Jiang, Y. He, "Highly sensitive and reproducible silicon-based surface-enhanced Raman scattering sensors for real applications," Analyst 141, 5010–5019 (2016).
[13] H. Lu, L. Zhu, Y. Lu, J. Su, R. Zhang, Y. Cui, "Manipulating "hot spots" from nanometer to angstrom: Toward understanding integrated contributions of molecule number and gap size for ultrasensitive surface-enhanced Raman scattering detection," ACS Appl. Mater. Interfaces 11, 39359– 39368 (2019).
[14] D. Cialla, A. Marz, R. Bohme, F. Theil, K. Weber, M. Schmitt, J. Popp, "Surface-enhanced Raman spectroscopy (SERS): Progress and trends," Ana. Bioanal. Chem. 403, 27–54 (2012).
[15] J. Neng, Q. Zhang, P. Sun, "Application of surfaceenhanced Raman spectroscopy in fast detection of toxic and harmful substances in food," Biosens. Bioelectron. 167, 112480 (2020).
[16] S. Yadav, J. Satija, "The current state of the art of plasmonic nanofibrous mats as SERS substrates: Design, fabrication and sensor applications," J. Mater. Chem. B 9, 267–282 (2020).
[17] T. Xuan, Y. Gao, Y. Cai, X. Guo, Y. Wen, H. Yang, "Fabrication and characterization of the stable Ag- Au-metal-organic-frameworks: An application for sensitive detection of thiabendazole," Sens. Actuators B Chem. 293, 289–295 (2019).
[18] S. De Marchi, L. Vazquez-Iglesias, G. Bodelón, I. Perez-Juste, L. A. Fernandez, J. Perez-Juste, I. Pastoriza-Santos, "Programmable modular assembly of functional proteins on Raman-encoded zeolitic imidazolate framework-8 (ZIF-8) nanoparticles as SERS tags," Chem. Mater. 32, 5739– 5749 (2020).
[19] M. Xu, H. Wu, Y. Tang, G. Mao, G. Wang, L. Zhang, Q. Liu, "One-step in-situ synthesis of porous Fe3t-doped TiO2 octahedra toward visible-light photocatalytic conversion of CO2 into solar fuel," Microporous Mesoporous Mater. 309, 110539 (2020).
[20] P. Jiang, Y. Hu, G. Li, "Biocompatible Au@Ag nanorod@ZIF-8 core-shell nanoparticles for surfaceenhanced Raman scattering imaging and drug delivery," Talanta 200, 212–217 (2019).
[21] Y. Wang, K. Wang, J. Lin, L. Xiao, X. Wang, "The preparation of nano-MIL-101(Fe)@chitosan hybrid sponge and its rapid and efficient adsorption to anionic dyes," Int. J. Biol. Macromol. 165, 2684–2692 (2020).
[22] N. A. A. Qasem, R. Ben-Mansour, M. A. Habib, "An efficient CO2 adsorptive storage using MOF-5 and MOF-177," Appl. Energy 210, 317–326 (2018).
[23] A. H. Assen, O. Yassine, O. Shekhah, M. Eddaoudi, K. N. Salama, "MOFs for the sensitive detection of ammonia: Deployment of fcu-MOF thin films as effective chemical capacitive sensors," ACS Sens 2, 1294-1301 (2017).
[24] N. Bhardwaj, S. K. Bhardwaj, J. Mehta, K. H. Kim, A. Deep, "MOF-bacteriophage biosensor for highly sensitive and specific detection of Staphylococcus aureus," ACS Appl. Mater. Interfaces 9, 33589– 33598 (2017).
[25] X. Cao, S. Hong, Z. Jiang, Y. She, S. Wang, C. Zhang, H. Li, F. Jin, M. Jin, J. Wang, "SERS-active metal-organic frameworks with embedded gold nanoparticles," Analyst 142, 2640–2647 (2017).
[26] C. Huang, A. Li, X. Chen, T. Wang, "Understanding the role of metal-organic frameworks in surface-enhanced Raman scattering application," Small 16, 2004802 (2020).
[27] Y. He, Y. Wang, X. Yang, S. Xie, R. Yuan, Y. Chai, "Metal organic frameworks combining CoFe2O4 magnetic nanoparticles as highly efficient SERS sensing platform for ultrasensitive detection of Nterminal pro-brain natriuretic peptide," ACS Appl. Mater. Interfaces 8, 7683–7690 (2016).
[28] D. Y. Hong, Y. K. Hwang, C. Serre, G. Ferey, J. S. Chang, "Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: Surface functionalization, encapsulation, sorption and catalysis," Adv. Funct. Mater. 19, 1537–1552 (2009).
[29] H. Zhu, M. Du, M. Zou, C. Xu, Y. Fu, "Green synthesis of Au nanoparticles immobilized on halloysite nanotubes for surface-enhanced Raman scattering substrates," Dalton Trans. 41, 10465– 10471 (2012).
[30] Y. Li, H. Zhang, P. Liu, D. Wang, Y. Li, H. Zhao, "Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity," Small 9, 3336–3344 (2013).
[31] J. Sun, G. Yu, Q. Huo, Q. Kan, J. Guan, "Epoxidation of styrene over Fe(Cr)-MIL-101 metal–organic frameworks," RSC Adv. 4, 38048– 38054 (2014).
[32] A. Gavezzotti, L. L. Presti, "Building blocks of crystal engineering: A large-database study of the intermolecular approach between C–H donor groups and O, N, Cl, or F acceptors in organic crystals," Cryst. Growth Des. 16, 2952–2962 (2016).
[33] B. Milan, D. L. Tery, B. M. Rodolfo, A. O. James, "Buffering system and its use in electrophoretic processes," US Patent, 5447612 (1995).
[34] K. Vikram, S. Mishra, S. K. Srivastava, R. K. Singh, "Low temperature Raman and DFT study of creatinine," J. Mol. Struct. 1012, 141–150 (2012).
[35] H. M. Heise, G. Voigt, P. Lampen, L. Küpper, S. Rudlo?, G. Werner, "Multivariate calibration for the determination of analytes in urine using midinfrared attenuated total reflection spectroscopy," Appl. Spectrosc. 55, 434–443 (2001).