• Photonics Research
  • Vol. 10, Issue 5, 1280 (2022)
Tengfei Hao1、2、3、†, Hao Ding4、†, Wei Li1、2、3, Ninghua Zhu1、2、3, Yitang Dai4、5、6, and Ming Li1、2、3、*
Author Affiliations
  • 1State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
  • 4State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 5Peng Cheng Laboratory, Shenzhen 518052, China
  • 6e-mail: ytdai@bupt.edu.cn
  • show less
    DOI: 10.1364/PRJ.451109 Cite this Article Set citation alerts
    Tengfei Hao, Hao Ding, Wei Li, Ninghua Zhu, Yitang Dai, Ming Li. Dissipative microwave photonic solitons in spontaneous frequency-hopping optoelectronic oscillators[J]. Photonics Research, 2022, 10(5): 1280 Copy Citation Text show less
    References

    [1] A. M. Wazwaz. Partial Differential Equations and Solitary Waves Theory(2009).

    [2] A. C. Scott, F. Y. F. Chu, D. W. McLaughlin. The soliton: a new concept in applied science. Proc. IEEE, 61, 1443-1483(1973).

    [3] L. F. Mollenauer, R. H. Stolen, J. P. Gordon. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett., 45, 1095-1098(1980).

    [4] B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. N. Wang, J. He, T. Liu, W. Xie, J. Guo, D. Kinghorn, L. Wu, Q.-X. Ji, T. J. Kippenberg, K. Vahala, J. E. Bowers. Integrated turnkey soliton microcombs. Nature, 582, 365-369(2020).

    [5] T. J. Kippenberg, A. L. Gaeta, M. Lipson, M. L. Gorodetsky. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [6] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, T. J. Kippenberg. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2014).

    [7] P. Grelu, N. Akhmediev. Dissipative solitons for mode-locked lasers. Nat. Photonics, 6, 84-92(2012).

    [8] X. Liu. Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity. Opt. Express, 17, 22401-22416(2009).

    [9] T. Ackemann, W. J. Firth, G. L. Oppo. Fundamentals and applications of spatial dissipative solitons in photonic devices. Adv. Atom. Mol. Opt. Phys., 57, 323-421(2009).

    [10] N. Akhmediev, A. Ankiewicz. Dissipative Solitons: From Optics to Biology and Medicine(2008).

    [11] D. S. Ricketts, X. Li, D. Ham. Electrical soliton oscillator. IEEE Trans. Microwave Theory Tech., 54, 373-382(2006).

    [12] D. S. Ricketts, E. Shi, X. Li, N. Sun, O. O. Yildirim, D. Ham. Electrical solitons for microwave systems: harmonizing nonlinearity and dispersion with nonlinear transmission line. IEEE Microw. Mag., 20, 123-134(2019).

    [13] S. Sultana, R. Schlickeiser, I. S. Elkamash, I. Kourakis. Dissipative high-frequency envelope soliton modes in nonthermal plasmas. Phys. Rev. E, 98, 033207(2018).

    [14] M. Selim Habib, C. Markos, O. Bang, M. Bache. Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers. Opt. Lett., 42, 2232-2235(2017).

    [15] P. K. Shukla, A. A. Mamun. Solitons shocks and vortices in dusty plasmas. New J. Phys., 5, 17(2003).

    [16] B. Doyon, T. Yoshimura, J.-S. Caux. Soliton gases and generalized hydrodynamics. Phys. Rev. Lett., 120, 045301(2018).

    [17] E. A. Kuznetsov, A. M. Rubenchik, V. E. Zakharov. Soliton stability in plasmas and hydrodynamics. Phys. Rep., 142, 103-165(1986).

    [18] S. A. Arsen’yev. Mathematical modeling of tornadoes and squall line storms. Geosci. Front, 2, 215-221(2011).

    [19] E. Tesio, G. R. M. Robb, T. Ackemann, W. J. Firth, G. L. Oppo. Dissipative solitons in the coupled dynamics of light and cold atoms. Opt. Express, 21, 26144-26149(2013).

    [20] N. S. Manton. Solitons as elementary particles: a paradigm scrutinized. Nonlinearity, 21, T221(2008).

    [21] G. P. Pronko. Soliton in gravitating gas: Hoag’s object. Theor. Math Phys., 146, 85-94(2006).

    [22] S. V. Antipov, M. V. Nezlin, E. N. Snezhkin, A. S. Trubnikov. Rossby autosoliton and stationary model of the Jovian great red spot. Nature, 323, 238-240(1986).

    [23] A. R. Bishop, J. A. Krumhansl, S. E. Trullinger. Solitons in condensed matter: a paradigm. Physica D, 1, 1-44(1980).

    [24] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80-90(2019).

    [25] J. Yao. Microwave photonics. J. Lightwave Technol., 27, 314-335(2009).

    [26] J. Capmany, D. Novak. Microwave photonics combines two worlds. Nat. Photonics, 1, 319-330(2007).

    [27] A. J. Seeds, K. J. Williams. Microwave photonics. J. Lightwave Technol., 24, 4628-4641(2006).

    [28] X. S. Yao, L. Maleki. Optoelectronic microwave oscillator. J. Opt. Soc. Am. B, 13, 1725-1735(1996).

    [29] L. Maleki. The optoelectronic oscillator. Nat. Photonics, 5, 728-730(2011).

    [30] T. Hao, Y. Liu, J. Tang, Q. Cen, W. Li, N. Zhu, Y. Dai, J. Capmany, J. Yao, M. Li. Recent advances in optoelectronic oscillators. Adv. Photonics, 2, 044001(2020).

    [31] D. Eliyahu, D. Seidel, L. Maleki. Phase noise of a high performance OEO and an ultra-low noise floor cross-correlation microwave photonic homodyne system. IEEE International Frequency Control Symposium, 811-814(2008).

    [32] T. Hao, J. Tang, D. Domenech, W. Li, N. Zhu, J. Capmany, M. Li. Toward monolithic integration of OEOs: from systems to chips. J. Lightwave Technol., 36, 4565-4582(2018).

    [33] W. Li, J. Yao. A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating. IEEE Trans. Microwave Theory Tech., 60, 1735-1742(2012).

    [34] Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, J. Yao. Tunable optoelectronic oscillator based on a polarization modulator and a chirped FBG. IEEE Photonics Technol. Lett., 24, 1487-1489(2012).

    [35] H. Peng, Y. Xu, X. Peng, X. Zhu, R. Guo, F. Chen, H. Du, Y. Chen, C. Zhang, L. Zhu, W. Hu, Z. Chen. Wideband tunable optoelectronic oscillator based on the deamplification of stimulated Brillouin scattering. Opt. Express, 25, 10287-10305(2017).

    [36] T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, M. Li. Breaking the limitation of mode building time in an optoelectronic oscillator. Nat. Commun., 9, 1839(2018).

    [37] Y. K. Chembo, D. Brunner, M. Jacquot, L. Larger. Optoelectronic oscillators with time-delayed feedback. Rev. Mod. Phys., 91, 035006(2019).

    [38] Y. K. Chembo, L. Larger, P. Colet. Nonlinear dynamics and spectral stability of optoelectronic microwave oscillators. IEEE J. Quantum Electron., 44, 858-866(2008).

    [39] M. Peil, M. Jacquot, Y. K. Chembo, L. Larger, T. Erneux. Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators. Phys. Rev. E, 79, 026208(2009).

    [40] T. Hao, Q. Cen, S. Guan, W. Li, Y. Dai, N. Zhu, M. Li. Optoelectronic parametric oscillator. Light Sci. Appl., 9, 102(2020).

    [41] Z. Ge, T. Hao, J. Capmany, W. Li, N. Zhu, M. Li. Broadband random optoelectronic oscillator. Nat. Commun., 11, 5724(2020).

    [42] G. Macchiarella, S. Tamiazzo. Design techniques for dual-passband filters. IEEE Trans. Microwave Theory Tech., 53, 3265-3271(2005).

    [43] X. S. Yao. Phase to amplitude modulation conversion using Brillouin selective sideband amplification. IEEE Photonics Technol. Lett., 10, 264-266(1998).

    [44] W. Li, M. Li, J. Yao. A narrow-passband and frequency-tunable micro-wave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating. IEEE Trans. Microwave Theory Tech., 60, 1287-1296(2012).

    [45] J. Tang, T. Hao, W. Li, D. Domenech, R. Banos, P. Muñoz, N. Zhu, J. Capmany, M. Li. Integrated optoelectronic oscillator. Opt. Express, 26, 12257-12265(2018).

    [46] Y. K. Chembo, A. Hmima, P. Lacourt, L. Larger, J. M. Dudley. Generation of ultralow jitter optical pulses using optoelectronic oscillators with time-lens soliton-assisted compression. J. Lightwave Technol., 27, 5160-5167(2009).

    [47] E. C. Levy, M. Horowitz. Single-cycle radio-frequency pulse generation by an optoelectronic oscillator. Opt. Express, 19, 17599-17608(2011).

    [48] P. Yao, L. Xu, Z. Sun. Design of low-noise X-band frequency source based on DDS-PLL. IEEE 2nd International Conference on Circuits and Systems (ICCS), 11-14(2020).

    [49] Y. Zhang, A. Zhang, C. He, C. Hou, J. Xu. Design of a fast-sweeping C-X band frequency source based on DDS and frequency multiplying chain. International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3(2021).

    [50] P. Zhou, F. Zhang, X. Ye, Q. Guo, S. Pan. Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser. IEEE Photonics J., 8, 5501909(2016).

    [51] Y. Chen. High-speed and wideband frequency-hopping microwave signal generation via switching the bias point of an optical modulator. IEEE Photonics J., 10, 5500407(2018).

    [52] A. Rashidinejad, A. M. Weiner. Photonic radio-frequency arbitrary waveform generation with maximal time-bandwidth product capability. J. Lightwave Technol., 32, 3383-3393(2014).

    Tengfei Hao, Hao Ding, Wei Li, Ninghua Zhu, Yitang Dai, Ming Li. Dissipative microwave photonic solitons in spontaneous frequency-hopping optoelectronic oscillators[J]. Photonics Research, 2022, 10(5): 1280
    Download Citation