• Laser & Optoelectronics Progress
  • Vol. 58, Issue 5, 0504001 (2021)
Zixiang Jiang1、2, Tingting Liu1、2, Qingxin Sun1、2, Cheng Zhang1、2、*, Tong Yu1、2, and Xiaofeng Li1、2、**
Author Affiliations
  • 1School of Optoelectronic Science and Engineering, Soochow University, Suzhou , Jiangsu 215006, China
  • 2Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Suzhou , Jiangsu 215006, China
  • show less
    DOI: 10.3788/LOP202158.0504001 Cite this Article Set citation alerts
    Zixiang Jiang, Tingting Liu, Qingxin Sun, Cheng Zhang, Tong Yu, Xiaofeng Li. Injection Efficiency in Hot-Electron Devices Based on Monte Carlo Simulation[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0504001 Copy Citation Text show less
    References

    [1] Lee D Y, Park J H, Kim Y H et al. Effect of Nb doping on morphology, crystal structure, optical band gap energy of TiO2 thin films‍. Current Applied Physics, 14, 421-427(2014).

    [2] Guo Q, Zhou C Y, Ma Z B et al. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Advanced Materials, 31, e1901997(2019).

    [3] Zhang D Z, Gu X H, Jing F Y et al. High performance ultraviolet detector based on TiO2/ZnO heterojunction. Journal of Alloys and Compounds, 618, 551-554(2015).

    [4] Bach U, Lupo D, Comte P et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 395, 583-585(1998).

    [5] Hossein-Babaei F, Lajvardi M M, Alaei-Sheini N. The energy barrier at noble metal/TiO2 junctions. Applied Physics Letters, 106, 083503(2015).

    [6] Wang Y, Aravind I, Cai Z et al. Hot electron driven photocatalysis on plasmon-resonant grating nanostructures‍. ACS Applied Materials & Interfaces, 12, 17459-17465(2020).

    [7] Leenheer A J, Narang P, Lewis N S et al. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates. Journal of Applied Physics, 115, 134301(2014).

    [8] Sobhani A, Knight M W, Wang Y et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nature Communications, 4, 1643(2013).

    [9] Knight M W, Sobhani H, Nordlander P et al. Photodetection with active optical antennas. Science, 332, 702-704(2011).

    [10] Lee Y K, Jung C H, Park J et al. Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes. Nano Letters, 11, 4251-4255(2011).

    [11] Yu T, Zhang C, Liu H M et al. Planar, narrowband, and tunable photodetection in the near-infrared with Au/TiO2 nanodiodes based on Tamm plasmons. Nanoscale, 11, 23182-23187(2019).

    [12] Shan H Y, Zu S, Fang Z Y. Research progress in ultrafast dynamics of plasmonic hot electrons. Laser & Optoelectronics Progress, 54, 030002(2017).

    [13] Rao W Y, Wang D, Kups T et al. Nanoporous gold nanoparticles and Au/Al2O3 hybrid nanoparticles with large tunability of plasmonic properties. ACS Applied Materials & Interfaces, 9, 6273-6281(2017).

    [14] Qi Z Y, Zhai Y S, Wen L et al. Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection‍. Nanotechnology, 28, 275202(2017).

    [15] Tanzid M, Ahmadivand A, Zhang R M et al. Combining plasmonic hot carrier generation with free carrier absorption for high-performance near-infrared silicon-based photodetection. ACS Photonics, 5, 3472-3477(2018).

    [16] Zhang C, Qian Q Y, Qin L L et al. Broadband light harvesting for highly efficient hot-electron application based on conformal metallic nanorod arrays. ACS Photonics, 5, 5079-5085(2018).

    [17] Yang Z Q, Du K, Wang H et al. Near-infrared photodetection with plasmon-induced hot electrons using silicon nanopillar array structure‍. Nanotechnology, 30, 075204(2019).

    [18] Yang Z Q, Liu M, Liang S H et al. Hybrid modes in plasmonic cavity array for enhanced hot-electron photodetection. Optics Express, 25, 20268-20273(2017).

    [19] Wen L, Chen Y F, Liang L et al. Hot electron harvesting via photoelectric ejection and photothermal heat relaxation in hotspots-enriched plasmonic/photonic disordered nanocomposites. ACS Photonics, 5, 581-591(2018).

    [20] Zhang C, Wu K, Giannini V et al. Planar hot-electron photodetection with Tamm plasmons. ACS Nano, 11, 1719-1727(2017).

    [21] Zhang C, Cao G Y, Wu S L et al. Thermodynamic loss mechanisms and strategies for efficient hot-electron photoconversion‍. Nano Energy, 55, 164-172(2019).

    [22] Sun Q X, Zhang C, Shao W J et al. Photodetection by hot electrons or hot holes: a comparable study on physics and performances. ACS Omega, 4, 6020-6027(2019).

    [23] Fowler R H. The analysis of photoelectric sensitivity curves for clean metals at various temperatures. Physical Review, 38, 45-56(1931).

    [24] Wu K, Chen J, McBride J R et al. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science, 349, 632-635(2015).

    [25] Crowell C R, Spitzer W G, Howarth L E et al. Attenuation length measurements of hot electrons in metal films. Physical Review, 127, 2006-2015(1962).

    [26] Schmidt-Ott A, Schurtenberger P, Siegmann H C. Enormous yield of photoelectrons from small particles. Physical Review Letters, 45, 1284-1287(1980).

    [27] Chen Q Y, Bates C W. Geometrical factors in enhanced photoyield from small metal particles. Physical Review Letters, 57, 2737-2740(1986).

    [28] Piryatinski A, Huang C K, Kwan T J T. Theory of electron transport and emission from a semiconductor nanotip‍. Journal of Applied Physics, 125, 214301(2019).

    [29] Muravev V, Mishchenka V. Modeling of electron transfer in graphene on sic substrate. International Journal of Nanoscience, 18, 1940093(2019).

    [30] Blandre E, Jalas D, Petrov A Y et al. Limit of efficiency of generation of hot electrons in metals and their injection inside a semiconductor using a semiclassical approach. ACS Photonics, 5, 3613-3620(2018).

    [31] Pescaglini A, Martín A, Cammi D et al. Hot-electron injection in Au nanorod-ZnO nanowire hybrid device for near-infrared photodetection. Nano Letters, 14, 6202-6209(2014).

    [32] Yu Y F, Ni Z H. Photodetection based on surface plasmon-induced hot electrons. Laser & Optoelectronics Progress, 56, 202403(2019).

    [33] He S Q, Ke H P, Yan L et al. Effect of interface state at semiconductor-insulator contact interface in Ge/Si heterogeneous bonding on photoelectric transport characteristics of heterojunction. Acta Optica Sinica, 40, 1931001(2020).

    [34] Zhen Z, Hao R, Xing D et al. Nearly-ballistic optimization design of high-speed uni-traveling-carrier photodiodes. Chinese Journal of Lasers, 47, 1006003(2020).

    [35] Ma R, Rao Y J, Zhang W L et al. Multimode random fiber laser for speckle-free imaging. IEEE Journal of Selected Topics in Quantum Electronics, 25, 0900106(2019).

    [36] Stuart R N, Wooten F. Monte Carlo calculations of electron scattering in photoemission. Physical Review, 156, 364-370(1967).

    [37] Huang K J, Li S X, Bai Z C et al. Surface plasmons based on nonlocal and size-dependent effects of metallic nanoparticles. Laser & Optoelectronics Progress, 56, 202414(2019).

    [38] Liu J G, Zhang H, Link S et al. Relaxation of plasmon-induced hot carriers. ACS Photonics, 5, 2584-2595(2018).

    [39] Bauer M, Marienfeld A, Aeschlimann M. Hot electron lifetimes in metals probed by time-resolved two-photon photoemission. Progress in Surface Science, 90, 319-376(2015).

    [40] Kanter H. Slow-electron mean free paths in aluminum, silver, and gold. Physical Review B, 1, 522-536(1970).

    [41] Krolikowski W F, Spicer W E. Photoemission studies of the noble metals. I. copper. Physical Review, 185, 882-900(1969).

    [42] Gong T, Munday J N. Angle-independent hot carrier generation and collection using transparent conducting oxides. Nano Letters, 15, 147-152(2015).

    Zixiang Jiang, Tingting Liu, Qingxin Sun, Cheng Zhang, Tong Yu, Xiaofeng Li. Injection Efficiency in Hot-Electron Devices Based on Monte Carlo Simulation[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0504001
    Download Citation