• Photonics Research
  • Vol. 10, Issue 3, 820 (2022)
Cheng-Zhe Chai1、2、†, Zhen Shen1、2、†, Yan-Lei Zhang1、2, Hao-Qi Zhao1、2、3, Guang-Can Guo1、2, Chang-Ling Zou1、2, and Chun-Hua Dong1、2、*
Author Affiliations
  • 1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • 2CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
  • 3Current address: Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
  • show less
    DOI: 10.1364/PRJ.446226 Cite this Article Set citation alerts
    Cheng-Zhe Chai, Zhen Shen, Yan-Lei Zhang, Hao-Qi Zhao, Guang-Can Guo, Chang-Ling Zou, Chun-Hua Dong. Single-sideband microwave-to-optical conversion in high-Q ferrimagnetic microspheres[J]. Photonics Research, 2022, 10(3): 820 Copy Citation Text show less
    References

    [1] R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, K. W. Lehnert. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys., 10, 321-326(2014).

    [2] J. Bochmann, A. Vainsencher, D. D. Awschalom, A. N. Cleland. Nanomechanical coupling between microwave and optical photons. Nat. Phys., 9, 712-716(2013).

    [3] A. Rueda, F. Sedlmeir, M. C. Collodo, U. Vogl, B. Stiller, G. Schunk, D. V. Strekalov, C. Marquardt, J. M. Fink, O. Painter, G. Leuchs, H. G. L. Schwefel. Efficient microwave to optical photon conversion: an electro-optical realization. Optica, 3, 597-604(2016).

    [4] N. J. Lambert, A. Rueda, F. Sedlmeir, H. G. Schwefel. Coherent conversion between microwave and optical photons: an overview of physical implementations. Adv. Quantum Technol., 3, 1900077(2020).

    [5] L. Fan, C.-L. Zou, R. Cheng, X. Guo, X. Han, Z. Gong, S. Wang, H. X. Tang. Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits. Sci. Adv., 4, eaar4994(2018).

    [6] X. Han, W. Fu, C.-L. Zou, L. Jiang, H. X. Tang. Microwave-optical quantum frequency conversion. Optica, 8, 1050-1064(2021).

    [7] S. Barzanjeh, S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, S. Pirandola. Microwave quantum illumination. Phys. Rev. Lett., 114, 080503(2015).

    [8] A. Vainsencher, K. Satzinger, G. Peairs, A. Cleland. Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device. Appl. Phys. Lett., 109, 033107(2016).

    [9] K. C. Balram, M. I. Davanço, J. D. Song, K. Srinivasan. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits. Nat. Photonics, 10, 346-352(2016).

    [10] M. Soltani, M. Zhang, C. Ryan, G. J. Ribeill, C. Wang, M. Loncar. Efficient quantum microwave-to-optical conversion using electro-optic nanophotonic coupled resonators. Phys. Rev. A, 96, 043808(2017).

    [11] A. P. Higginbotham, P. Burns, M. Urmey, R. Peterson, N. Kampel, B. Brubaker, G. Smith, K. Lehnert, C. Regal. Harnessing electro-optic correlations in an efficient mechanical converter. Nat. Phys., 14, 1038-1042(2018).

    [12] Y. Xu, A. A. Sayem, L. Fan, C.-L. Zou, S. Wang, R. Cheng, W. Fu, L. Yang, M. Xu, H. X. Tang. Bidirectional interconversion of microwave and light with thin-film lithium niobate. Nat. Commun., 12, 4453(2021).

    [13] T. Vogt, C. Gross, J. Han, S. B. Pal, M. Lam, M. Kiffner, W. Li. Efficient microwave-to-optical conversion using Rydberg atoms. Phys. Rev. A, 99, 023832(2019).

    [14] B. T. Gard, K. Jacobs, R. McDermott, M. Saffman. Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator. Phys. Rev. A, 96, 013833(2017).

    [15] D. Petrosyan, K. Mølmer, J. Fortágh, M. Saffman. Microwave to optical conversion with atoms on a superconducting chip. New J. Phys., 21, 073033(2019).

    [16] S. Welinski, P. J. Woodburn, N. Lauk, R. L. Cone, C. Simon, P. Goldner, C. W. Thiel. Electron spin coherence in optically excited states of rare-earth ions for microwave to optical quantum transducers. Phys. Rev. Lett., 122, 247401(2019).

    [17] J. R. Everts, M. C. Berrington, R. L. Ahlefeldt, J. J. Longdell. Microwave to optical photon conversion via fully concentrated rare-earth-ion crystals. Phys. Rev. A, 99, 063830(2019).

    [18] A. V. Chumak, V. I. Vasyuchka, A. A. Serga, B. Hillebrands. Magnon spintronics. Nat. Phys., 11, 453-461(2015).

    [19] M. Harder, Y. Yang, B. Yao, C. Yu, J. Rao, Y. Gui, R. Stamps, C.-M. Hu. Level attraction due to dissipative magnon-photon coupling. Phys. Rev. Lett., 121, 137203(2018).

    [20] Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, Y. Nakamura. Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science, 349, 405-408(2015).

    [21] D. Lachance-Quirion, S. P. Wolski, Y. Tabuchi, S. Kono, K. Usami, Y. Nakamura. Entanglement-based single-shot detection of a single magnon with a superconducting qubit. Science, 367, 425-428(2020).

    [22] D. Lachance-Quirion, Y. Tabuchi, A. Gloppe, K. Usami, Y. Nakamura. Hybrid quantum systems based on magnonics. Appl. Phys. Express, 12, 070101(2019).

    [23] S. Viola Kusminskiy, H. X. Tang, F. Marquardt. Coupled spin-light dynamics in cavity optomagnonics. Phys. Rev. A, 94, 033821(2016).

    [24] J. Graf, H. Pfeifer, F. Marquardt, S. V. Kusminskiy. Cavity optomagnonics with magnetic textures: coupling a magnetic vortex to light. Phys. Rev. B, 98, 241406(2018).

    [25] Z.-X. Liu, B. Wang, H. Xiong, Y. Wu. Magnon-induced high-order sideband generation. Opt. Lett., 43, 3698-3701(2018).

    [26] X. Zhang, N. Zhu, C.-L. Zou, H. X. Tang. Optomagnonic whispering gallery microresonators. Phys. Rev. Lett., 117, 123605(2016).

    [27] A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R. Yamazaki, K. Usami, M. Sadgrove, R. Yalla, M. Nomura, Y. Nakamura. Cavity optomagnonics with spin-orbit coupled photons. Phys. Rev. Lett., 116, 223601(2016).

    [28] A. Osada, A. Gloppe, R. Hisatomi, A. Noguchi, R. Yamazaki, M. Nomura, Y. Nakamura, K. Usami. Brillouin light scattering by magnetic quasivortices in cavity optomagnonics. Phys. Rev. Lett., 120, 133602(2018).

    [29] J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, A. J. Ferguson. Triple-resonant Brillouin light scattering in magneto-optical cavities. Phys. Rev. Lett., 117, 133602(2016).

    [30] N. Zhu, X. Zhang, X. Han, C.-L. Zou, C. Zhong, C.-H. Wang, L. Jiang, H. X. Tang. Waveguide cavity optomagnonics for broadband multimode microwave-to-optics conversion. Optica, 7, 1291-1297(2020).

    [31] R. Hisatomi, A. Noguchi, R. Yamazaki, Y. Nakata, A. Gloppe, Y. Nakamura, K. Usami. Helicity-changing Brillouin light scattering by magnons in a ferromagnetic crystal. Phys. Rev. Lett., 123, 207401(2019).

    [32] C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, G.-C. Guo. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nat. Commun., 6, 6193(2015).

    [33] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [34] C.-Z. Chai, H.-Q. Zhao, H. X. Tang, G.-C. Guo, C.-L. Zou, C.-H. Dong. Non-reciprocity in high-Q ferromagnetic microspheres via photonic spin–orbit coupling. Laser Photon. Rev., 14, 1900252(2020).

    [35] K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, A. V. Zayats. Spin–orbit interactions of light. Nat. Photonics, 9, 796-808(2015).

    [36] K. Y. Bliokh, D. Smirnova, F. Nori. Quantum spin Hall effect of light. Science, 348, 1448-1451(2015).

    [37] Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, C.-H. Dong. Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics, 10, 657-661(2016).

    [38] T. J. Kippenberg, K. J. Vahala. Cavity optomechanics: back-action at the mesoscale. Science, 321, 1172-1176(2008).

    [39] E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, K. C. Schwab. Quantum squeezing of motion in a mechanical resonator. Science, 349, 952-955(2015).

    [40] U.-S. Lee, H.-D. Jung, S.-K. Han. Optical single sideband signal generation using phase modulation of semiconductor optical amplifier. IEEE Photon. Technol. Lett., 16, 1373-1375(2004).

    [41] C.-Z. Chai, X.-X. Hu, C.-L. Zou, G.-C. Guo, C.-H. Dong. Thermal bistability of magnon in yttrium iron garnet microspheres. Appl. Phys. Lett., 114, 021101(2019).

    [42] N. J. Lambert, J. A. Haigh, A. J. Ferguson. Identification of spin wave modes in yttrium iron garnet strongly coupled to a co-axial cavity. J. Appl. Phys., 117, 053910(2015).

    [43] J. A. Haigh, N. J. Lambert, S. Sharma, Y. M. Blanter, G. E. W. Bauer, A. J. Ramsay. Selection rules for cavity-enhanced Brillouin light scattering from magnetostatic modes. Phys. Rev. B, 97, 214423(2018).

    [44] C.-L. Zou, X.-B. Zou, F.-W. Sun, Z.-F. Han, G.-C. Guo. Room-temperature steady-state optomechanical entanglement on a chip. Phys. Rev. A, 84, 032317(2011).

    Cheng-Zhe Chai, Zhen Shen, Yan-Lei Zhang, Hao-Qi Zhao, Guang-Can Guo, Chang-Ling Zou, Chun-Hua Dong. Single-sideband microwave-to-optical conversion in high-Q ferrimagnetic microspheres[J]. Photonics Research, 2022, 10(3): 820
    Download Citation