• Advanced Photonics
  • Vol. 5, Issue 5, 056008 (2023)
Yu He1, Xingfeng Li1, Yong Zhang1, Shaohua An1, Hongwei Wang1, Zhen Wang1, Haoshuo Chen2, Yetian Huang3, Hanzi Huang3, Nicolas K. Fontaine2, Roland Ryf2, Yuhan Du1, Lu Sun1, Xingchen Ji4, Xuhan Guo1, Yingxiong Song3, Qianwu Zhang3, and Yikai Su1、*
Author Affiliations
  • 1Shanghai Jiao Tong University, Department of Electronic Engineering, State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai, China
  • 2Nokia Bell Labs, Murray Hill, New Jersey, United States
  • 3Shanghai University, Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai, China
  • 4Shanghai Jiao Tong University, School of Electronic Information and Electrical Engineering, John Hopcroft Center for Computer Science, Shanghai, China
  • show less
    DOI: 10.1117/1.AP.5.5.056008 Cite this Article Set citation alerts
    Yu He, Xingfeng Li, Yong Zhang, Shaohua An, Hongwei Wang, Zhen Wang, Haoshuo Chen, Yetian Huang, Hanzi Huang, Nicolas K. Fontaine, Roland Ryf, Yuhan Du, Lu Sun, Xingchen Ji, Xuhan Guo, Yingxiong Song, Qianwu Zhang, Yikai Su. On-chip metamaterial-enabled high-order mode-division multiplexing[J]. Advanced Photonics, 2023, 5(5): 056008 Copy Citation Text show less
    References

    [1] M. Asghari, A. V. Krishnamoorthy. Energy-efficient communication. Nat. Photonics, 5, 268-270(2011).

    [2] P. J. Winzer. Making spatial multiplexing a reality. Nat. Photonics, 8, 345-348(2014).

    [3] L. W. Luo et al. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun., 5, 1038(2014).

    [4] Y. Zhao et al. Visible nonlinear photonics via high-order-mode dispersion engineering. Optica, 7, 135-141(2020).

    [5] A. Fernández Gavela et al. Last advances in silicon-based optical biosensors. Sensors, 16, 285(2016).

    [6] J. Wang et al. Multidimensional quantum entanglement with large-scale integrated optics. Science, 360, 285-291(2018).

    [7] J. Wang et al. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2020).

    [8] R. Hamerly et al. Large-scale optical neural networks based on photoelectric multiplication. Phys. Rev. X, 9, 021032(2019).

    [9] Y. Su et al. Perspective on mode-division multiplexing. Appl. Phys. Lett., 118, 200502(2021).

    [10] D. Dai et al. Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength- and mode-division-multiplexing. Laser Photonics Rev., 9, 339-344(2015).

    [11] W. F. Jiang, J. Y. Miao, T. Li. Compact silicon 10-mode multi/demultiplexer for hybrid mode- and polarisation-division multiplexing system. Sci. Rep., 9, 13223(2019).

    [12] J. Wang, S. T. Chen, D. X. Dai. Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects. Opt. Lett., 39, 6993-6996(2014).

    [13] W. W. Chen et al. Silicon three-mode (de)multiplexer based on cascaded asymmetric Y junctions. Opt. Lett., 41, 2851-2854(2016).

    [14] Y. H. Ding et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt. Express, 21, 10376-10382(2013).

    [15] C. Li, D. Dai. Low-loss and low-crosstalk multi-channel mode (de)multiplexer with ultrathin silicon waveguides. Opt. Lett., 42, 2370-2373(2017).

    [16] Y. Zhang et al. Architecture and devices for silicon photonic switching in wavelength, polarization and mode. J. Lightwave Technol., 38, 215-225(2020).

    [17] L. H. Gabrielli et al. On-chip transformation optics for multimode waveguide bends. Nat. Commun., 3, 1217(2012).

    [18] H. N. Xu, Y. C. Shi. Ultra-sharp multi-mode waveguide bending assisted with metamaterial-based mode converters. Laser Photonics Rev., 12, 1700240(2018).

    [19] H. Wu et al. Ultra-sharp multimode waveguide bends with subwavelength gratings. Laser Photonics Rev., 13, 1800119(2019).

    [20] Y. Wang, D. Dai. Multimode silicon photonic waveguide corner-bend. Opt. Express, 28, 9062-9071(2020).

    [21] C. Li et al. Ten-channel mode-division-multiplexed silicon photonic integrated circuit with sharp bends. Front. Inf. Technol. Electron. Eng., 20, 498-506(2019).

    [22] S. Li et al. Universal multimode waveguide crossing based on transformation optics. Optica, 5, 1549-1556(2018).

    [23] H. Xu, Y. Shi. Metamaterial-based Maxwell’s fisheye lens for multimode waveguide crossing. Laser Photonics Rev., 12, 1800094(2018).

    [24] H. Xu, Y. Shi. Dual-mode waveguide crossing utilizing taper-assisted multimode-interference couplers. Opt. Lett., 41, 5381-5384(2016).

    [25] T. Hung et al. Wideband and channel switchable mode division multiplexing (MDM) optical power divider supporting 7.682 Tbit/s for on-chip optical interconnects. Sensors, 23, 711(2023).

    [26] G. Chen et al. Silicon-photonics based remote-radio-head using mode and wavelength division multiplexing with capacity of 4.781 Tbit/s for radio-over-fiber massive MIMO, 1-3(2019).

    [27] D. Dai, E. B. John. Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects. Nanophotonics, 3, 283-311(2014).

    [28] A. C. Turner et al. Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt. Express, 14, 4357-4362(2006).

    [29] Y. Su, Y. Zhang. Passive Silicon Photonic Devices(2022).

    [30] Y. Su et al. Silicon photonic platform for passive waveguide devices: materials, fabrication, and applications. Adv. Mater. Technol., 5, 1901153(2020).

    [31] S. Jahani, Z. Jacob. All-dielectric metamaterials. Nat. Nanotechnol., 11, 23-36(2016).

    [32] L. H. Gabrielli et al. Silicon nanostructure cloak operating at optical frequencies. Nat. Photonics, 3, 461-463(2009).

    [33] J. Sylvestre, J.-F. Morissette. Neuromorphic metamaterial structures. Mater. Des., 210, 110078(2021).

    [34] Y. Zhang et al. Ultra-broadband mode size converter using on-chip metamaterial-based luneburg lens. ACS Photonics, 8, 201-208(2020).

    [35] Y. Jin et al. New class of bioinspired lenses with a gradient refractive index. J. Appl. Polym. Sci., 103, 1834-1841(2007).

    [36] D. Ohana et al. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides. Nano Lett., 16, 7956-7961(2016).

    [37] Y. Zhao et al. On-chip metamaterial enabled wavelength (de)multiplexer. Laser Photonics Rev., 16, 2200005(2022).

    [38] J. Xiang et al. Metamaterial-enabled arbitrary on-chip spatial mode manipulation. Light: Sci. Appl., 11, 168(2022).

    [39] Y. Liu et al. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration. Nat. Commun., 10, 3263(2019).

    [40] R. Halir et al. Subwavelength-grating metamaterial structures for silicon photonic devices. Proc. IEEE, 106, 2144-2157(2018).

    [41] J. M. Luque-González et al. A review of silicon subwavelength gratings: building break-through devices with anisotropic metamaterials. Nanophotonics, 10, 2765-2797(2021).

    [42] P. Cheben et al. Subwavelength integrated photonics. Nature, 560, 565-572(2018).

    [43] Y. He et al. Silicon polarization splitter and rotator using a subwavelength grating based directional coupler, Th1G.6(2017).

    [44] X. Liang et al. Efficient active-to-passive light coupling of InGaAsP/InP laser using subwavelength coupler. IEEE Photonics J., 5, 6602408(2013).

    [45] Y. He et al. Record high-order mode-division-multiplexed transmission on chip using gradient-duty-cycle subwavelength gratings, F3A.2(2021).

    [46] A. Yariv, P. Yeh. Optical Waves in Crystals, 5(1984).

    [47] Y. Huang et al. On-chip mode-division multiplexing transmission with modal crosstalk mitigation employing low-coherence matched detection. J. Lightwave Technol., 39, 2008-2014(2021).

    Yu He, Xingfeng Li, Yong Zhang, Shaohua An, Hongwei Wang, Zhen Wang, Haoshuo Chen, Yetian Huang, Hanzi Huang, Nicolas K. Fontaine, Roland Ryf, Yuhan Du, Lu Sun, Xingchen Ji, Xuhan Guo, Yingxiong Song, Qianwu Zhang, Yikai Su. On-chip metamaterial-enabled high-order mode-division multiplexing[J]. Advanced Photonics, 2023, 5(5): 056008
    Download Citation