• Laser & Optoelectronics Progress
  • Vol. 59, Issue 22, 2210008 (2022)
Ming Chen*, Xiangyun Xi, and Yang Wang
Author Affiliations
  • Department of Information, Shanghai Ocean University, Shanghai 201306, China
  • show less
    DOI: 10.3788/LOP202259.2210008 Cite this Article Set citation alerts
    Ming Chen, Xiangyun Xi, Yang Wang. Hyperspectral Image Classification Based on Residual Generative Adversarial Network[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2210008 Copy Citation Text show less
    References

    [1] Liu L, Feng J L, Han L et al. Mineral mapping using spaceborne Tiangong-1 hyperspectral imagery and ASTER data: a case study of alteration detection in support of regional geological survey at Jintanzi-Malianquan area, Beishan, Gansu Province, China[J]. Geological Journal, 53, 372-383(2018).

    [2] Lu B, Dao P, Liu J G et al. Recent advances of hyperspectral imaging technology and applications in agriculture[J]. Remote Sensing, 12, 2659(2020).

    [3] Courbot J B, Mazet V, Monfrini E et al. Extended faint source detection in astronomical hyperspectral images[J]. Signal Processing, 135, 274-283(2017).

    [4] Cristóbal J, Graham P, Prakash A et al. Airborne hyperspectral data acquisition and processing in the Arctic: a pilot study using the hyspex imaging spectrometer for wetland mapping[J]. Remote Sensing, 13, 1178(2021).

    [5] Bo C J, Lu H C, Wang D. Spectral-spatial K-Nearest Neighbor approach for hyperspectral image classification[J]. Multimedia Tools and Applications, 77, 10419-10436(2018).

    [6] Xu S Y, Liu S Z, Wang H et al. A hyperspectral image classification approach based on feature fusion and multi-layered gradient boosting decision trees[J]. Entropy, 23, 20(2020).

    [7] He J X, Chen S B, Wang Y et al. An accurate approach to hyperspectral mineral identification based on naive Bayesian classification model[J]. Spectroscopy and Spectral Analysis, 34, 505-509(2014).

    [8] Chen Y N, Thaipisutikul T, Han C C et al. Feature line embedding based on support vector machine for hyperspectral image classification[J]. Remote Sensing, 13, 130(2021).

    [9] Chen G Y. Multiscale filter-based hyperspectral image classification with PCA and SVM[J]. Journal of Electrical Engineering, 72, 40-45(2021).

    [10] Tu B, Zhang X F, Zhang G Y et al. Hyperspectral image classification via recursive filtering and KNN[J]. Remote Sensing for Land & Resources, 31, 22-32(2019).

    [11] Liu J M, Zheng C, Zhang L M et al. Hyperspectral image classification method based on image reconstruction feature fusion[J]. Chinese Journal of Lasers, 48, 0910001(2021).

    [12] Vaddi R, Manoharan P. Hyperspectral image classification using CNN with spectral and spatial features integration[J]. Infrared Physics & Technology, 107, 103296(2020).

    [13] Sellami A, Ben Abbes A, Barra V et al. Fused 3-D spectral-spatial deep neural networks and spectral clustering for hyperspectral image classification[J]. Pattern Recognition Letters, 138, 594-600(2020).

    [14] Venkatesan R, Prabu S. Hyperspectral image features classification using deep learning recurrent neural networks[J]. Journal of Medical Systems, 43, 216(2019).

    [15] Liang H B, Bao W X, Shen X F. Adaptive weighting feature fusion approach based on generative adversarial network for hyperspectral image classification[J]. Remote Sensing, 13, 198(2021).

    [16] Wang X, Fan Y G. Hyperspectral image classification based on modified DenseNet and spatial spectrum attention mechanism[J]. Laser & Optoelectronics Progress, 59, 0210014(2022).

    [17] Zhang X D, Wang T J, Zhu S J et al. Hyperspectral image classification based on dilated convolutional attention neural network[J]. Acta Optica Sinica, 41, 0310001(2021).

    [18] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [19] Zhu L, Chen Y S, Ghamisi P et al. Generative adversarial networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 5046-5063(2018).

    [20] Shao Y, Lan J H, Liang Y Z et al. Residual networks with multi-attention mechanism for hyperspectral image classification[J]. Arabian Journal of Geosciences, 14, 1-19(2021).

    [21] Li H C, Wang W Y, Ye S H et al. A mixture generative adversarial network with category multi-classifier for hyperspectral image classification[J]. Remote Sensing Letters, 11, 983-992(2020).

    [22] Goodfellow I J, Pouget-Abadie J, Mirza M et al. Generative adversarial network[EB/OL]. https://arxiv.org/abs/1406.2661

    [23] Shyamala D M, Sagar A, Thapa K et al. Activation layers implication of CNN sequential models for facial expression recognition[J]. IOP Conference Series: Materials Science and Engineering, 1074, 012030(2021).

    [24] Srivastava N, Hinton G E, Krizhevsky A et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 15, 1929-1958(2014).

    [25] Peng Y L, Zhang L, Zhang Y et al. Deep deconvolution neural network for image super-resolution[J]. Journal of Software, 29, 926-934(2018).

    [26] Ahmad M, Mazzara M, Distefano S. Regularized CNN feature hierarchy for hyperspectral image classification[J]. Remote Sensing, 13, 2275(2021).

    [27] Tarabalka Y, Fauvel M, Chanussot J et al. SVM- and MRF-based method for accurate classification of hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 7, 736-740(2020).

    [28] Li J J, Cui R X, Li B et al. Hyperspectral image super-resolution with 1D–2D attentional convolutional neural network[J]. Remote Sensing, 11, 2859(2019).

    [29] Wang Y, Liang Q. Fast 3D-cnn combined with depth separable convolution for hyperspectral image classification[J/OL]. Journal of Frontiers of Computer Science and Technology, 1-12. http://kns.cnki.net/kcms/detail/11.5602.TP.20210429.1136.004.html

    [30] Meng Z, Zhao F, Liang M M et al. Deep residual involution network for hyperspectral image classification[J]. Remote Sensing, 13, 3055(2021).

    Ming Chen, Xiangyun Xi, Yang Wang. Hyperspectral Image Classification Based on Residual Generative Adversarial Network[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2210008
    Download Citation