• Laser & Optoelectronics Progress
  • Vol. 59, Issue 22, 2210008 (2022)
Ming Chen*, Xiangyun Xi, and Yang Wang
Author Affiliations
  • Department of Information, Shanghai Ocean University, Shanghai 201306, China
  • show less
    DOI: 10.3788/LOP202259.2210008 Cite this Article Set citation alerts
    Ming Chen, Xiangyun Xi, Yang Wang. Hyperspectral Image Classification Based on Residual Generative Adversarial Network[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2210008 Copy Citation Text show less
    Framework of GAN for hyperspectral image classification
    Fig. 1. Framework of GAN for hyperspectral image classification
    Sructure of residual unit
    Fig. 2. Sructure of residual unit
    Flowchart of hyperspectral image classification method using residual generative adversarial network
    Fig. 3. Flowchart of hyperspectral image classification method using residual generative adversarial network
    Structure for residual block of generator
    Fig. 4. Structure for residual block of generator
    Network structure of generator
    Fig. 5. Network structure of generator
    Structure for residual block of discriminator. (a) Block structure with convolution residuals; (b) Block structure without convolution residuals
    Fig. 6. Structure for residual block of discriminator. (a) Block structure with convolution residuals; (b) Block structure without convolution residuals
    Network structure of discriminator
    Fig. 7. Network structure of discriminator
    Pavia University dataset. (a) Pseudo color image; (b) ground datum map
    Fig. 8. Pavia University dataset. (a) Pseudo color image; (b) ground datum map
    Salinas dataset. (a) Pseudo color image; (b) ground datum map
    Fig. 9. Salinas dataset. (a) Pseudo color image; (b) ground datum map
    Indian Pines dataset. (a) Pseudo color image; (b) ground datum map
    Fig. 10. Indian Pines dataset. (a) Pseudo color image; (b) ground datum map
    Hyperspectral image classification result map of Indian Pines dataset. (a) CAE-SVM; (b) 2DCNN; (c) 3DCNN; (d) ResNet;(e) proposed method
    Fig. 11. Hyperspectral image classification result map of Indian Pines dataset. (a) CAE-SVM; (b) 2DCNN; (c) 3DCNN; (d) ResNet;(e) proposed method
    Hyperspectral image classification result map of Pavia University dataset. (a) CAE-SVM; (b) 2DCNN; (c) 3DCNN; (d) ResNet;(e) proposed method
    Fig. 12. Hyperspectral image classification result map of Pavia University dataset. (a) CAE-SVM; (b) 2DCNN; (c) 3DCNN; (d) ResNet;(e) proposed method
    Hyperspectral image classification result map of Salinas dataset. (a) CAE-SVM; (b) 2DCNN; (c) 3DCNN; (d) ResNet;(e) proposed method
    Fig. 13. Hyperspectral image classification result map of Salinas dataset. (a) CAE-SVM; (b) 2DCNN; (c) 3DCNN; (d) ResNet;(e) proposed method
    ClassNameColorSample
    1Asphalt6631
    2Meadows18649
    3Gravel2099
    4Trees3064
    5Painted metal sheets1345
    6Bare Soil5029
    7Bitumen1330
    8Self-Blocking Bricks3682
    9Shadows947
    Table 1. Categories and number of Pavia University hyperspectral dataset
    ClassNameColorSample
    1Brocoli_green_weeds_12009
    2Brocoli_green_weeds_23726
    3Fallow1976
    4Fallow_rough_plow1394
    5Fallow_smooth2678
    6Stubble3959
    7Celery3579
    8Grapes_untrained11271
    9Soil_vinyard_develop6203
    10Corn_senesced_green_weeds3278
    11Lettuce_romaine_4wk1068
    12Lettuce_romaine_5wk1927
    13Lettuce_romaine_6wk916
    14Lettuce_romaine_7wk1070
    15Vinyard_untrained7268
    16Vinyard_vertical_trellis1807
    Table 2. Categories and number of Salinas hyperspectral dataset
    ClassNameColorSample
    1Alfalfa46
    2Corn-notill1428
    3Corn-mintill830
    4Corn237
    5Grass-pasture483
    6Grass-trees730
    7Grass-pasture-mowed28
    8Hay-windrowed478
    9Oats20
    10Soybean-notill972
    11Soybean-mintill2455
    12Soybean-clean593
    13Wheat205
    14Woods1265
    15Buildings-Grass-Trees-Drives386
    16Stone-Steel-Towers93
    Table 3. Categories and number of Indian Pines dataset
    IndexGANGAN with residual genenratorGAN with residual discriminatorProposed method
    IPPUSAIPPUSAIPPUSAIPPUSA
    OA95.8596.5996.5796.5297.1197.5397.2197.3497.9398.8499.0099.09
    AA94.1094.4298.0298.5095.7798.6996.3896.2598.7798.4898.7499.45
    K95.2795.4796.1896.0396.1697.2596.8296.4697.6998.6998.6798.98
    Table 4. Comparison of classification results of ablation experiments
    IndexCAE-SVM2DCNN3DCNNResNetProposed method
    OA76.8185.9393.8597.0598.84
    AA75.5287.2394.1396.7898.48
    K75.2884.3092.7796.6398.69
    Table 5. Comparison of classification accuracy of Indian Pines hyperspectral dataset
    IndexCAE-SVM2DCNN3DCNNResNetProposed
    OA84.2890.8195.6997.2499.00
    AA70.8586.2594.2396.3998.74
    K78.6787.7194.2996.3598.67
    Table 6. Comparison of classification accuracy of Pavia University hyperspectral dataset
    IndexCAE-SVM2DCNN3DCNNResNetProposed
    OA84.3491.2295.4197.2099.09
    AA79.9793.0296.0798.3199.45
    K82.5290.2294.1596.9198.98
    Table 7. Comparison of classification accuracy of Salinas hyperspectral dataset
    Ming Chen, Xiangyun Xi, Yang Wang. Hyperspectral Image Classification Based on Residual Generative Adversarial Network[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2210008
    Download Citation