• Laser & Optoelectronics Progress
  • Vol. 57, Issue 23, 232301 (2020)
Zhihao Yuan1、2, Yu Xu3, Bing Cao1、2、*, and Qinhua Wang1、2、*
Author Affiliations
  • 1School of Optoelectronic Science and Engineering, Soochow University, Suzhou, Jiangsu 215006, China
  • 2Key Lab of Modern Optical Technologies of Education Ministry of China, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Suzhou, Jiangsu 215006, China
  • 3Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
  • show less
    DOI: 10.3788/LOP57.232301 Cite this Article Set citation alerts
    Zhihao Yuan, Yu Xu, Bing Cao, Qinhua Wang. Broadband Transmission Infrared Light Modulator Based on Graphene Plasma[J]. Laser & Optoelectronics Progress, 2020, 57(23): 232301 Copy Citation Text show less
    References

    [1] Khorasaninejad M, Shi Z, Zhu A Y et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 17, 1819-1824(2017). http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b05137

    [2] Wang S, Wu P C, Su V C et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018). http://www.nature.com/articles/s41565-017-0052-4

    [3] Qian Q Y, Sun T, Yan Y et al. Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances[J]. Advanced Optical Materials, 5, 1700064(2017). http://onlinelibrary.wiley.com/doi/10.1002/adom.201700064/pdf

    [4] Suen J Y, Fan K B, Padilla W J. A zero-rank, maximum nullity perfect electromagnetic wave absorber[J]. Advanced Optical Materials, 7, 1801632(2019). http://onlinelibrary.wiley.com/doi/10.1002/adom.201801632

    [5] Liu A, Jones R, Liao L et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor[J]. Nature, 427, 615-618(2004).

    [6] Reed G T, Mashanovich G, Gardes F Y et al. Silicon optical modulators[J]. Nature Photonics, 4, 518-526(2010).

    [7] Novoselov K S. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [8] Fang Z Y, Liu Z, Wang Y M et al. Graphene-antenna sandwich photodetector[J]. Nano Letters, 12, 3808-3813(2012).

    [9] Yao Y, Kats M A, Genevet P et al. Broad electrical tuning of graphene-loaded plasmonic antennas[J]. Nano Letters, 13, 1257-1264(2013).

    [10] Li Q, Tian Z, Zhang X Q et al. Active graphene-silicon hybrid diode for terahertz waves[J]. Nature Communications, 6, 7082(2015).

    [11] Li Q, Tian Z, Zhang X Q et al. Dual control of active graphene-silicon hybrid metamaterial devices[J]. Carbon, 90, 146-153(2015).

    [12] Valmorra F, Scalari G, Maissen C et al. Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial[J]. Nano Letters, 13, 3193-3198(2013).

    [13] Arezoomandan S. Condori Quispe H O, Ramey N, et al. Graphene-based reconfigurable terahertz plasmonics and metamaterials[J]. Carbon, 112, 177-184(2017).

    [14] Yuan Y H, Chen X Y, Hu F R et al. Terahertz amplitude modulator based on metasurface/ion-gel/graphene hybrid structure[J]. Chinese Journal of Lasers, 46, 0614016(2019).

    [15] Fei Z, Rodin A S, Andreev G O et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature, 487, 82-85(2012).

    [16] Yan H, Li X, Chandra B et al. Tunable infrared plasmonic devices using graphene/insulator stacks[J]. Nature Nanotechnology, 7, 330-334(2012).

    [17] Furchi M, Urich A, Pospischil A et al. Microcavity-integrated graphene photodetector[J]. Nano Letters, 12, 2773-2777(2012).

    [18] Liu J T, Liu N H, Li J et al. Enhanced absorption of graphene with one-dimensional photonic crystal[J]. Applied Physics Letters, 101, 052104(2012).

    [19] Wang L, Luan K Z, Zuo Y F et al. Graphene optical modulator based on optical tamm states[J]. Chinese Journal of Lasers, 45, 1106001(2018).

    [20] Cai Y J, Zhu J F, Liu Q H et al. Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits[J]. Optics Express, 23, 32318-32328(2015).

    [21] Dabidian N, Kholmanov I, Khanikaev A B et al. Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces[J]. ACS Photonics, 2, 216-227(2015).

    [22] Liu M, Yin X, Ulin-Avila E et al. A graphene-based broadband optical modulator[J]. Nature, 474, 64-67(2011).

    [23] Wang S L, Ye Z W, Peng X L et al. Study of highly-efficient composite waveguide modulator based on graphene[J]. Acta Optica Sinica, 38, 0513003(2018).

    [24] Gao W L, Shu J, Qiu C Y et al. Excitation of plasmonic waves in graphene by guided-mode resonances[J]. ACS Nano, 6, 7806-7813(2012).

    [25] Falkovsky L, Pershoguba S S. Optical far-infrared properties of a graphene monolayer and multilayer[J]. Physical Review B, 76, 153410(2007).

    [26] Petrone N, Dean C R, Meric I et al. Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene[J]. Nano Letters, 12, 2751-2756(2012).

    [27] Liu W G, Hu B, Huang Z D et al. Graphene-enabled electrically controlled terahertz meta-lens[J]. Photonics Research, 6, 703-708(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ1807040000733y6B9E

    [28] Cheng J R, Fan F, Chang S J. Recent progress on graphene-functionalized metasurfaces for tunable phase and polarization control[J]. Nanomaterials, 9, 398(2019).

    [29] Wang W, Meng Z, Liang R S et al. A dynamically tunable plasmonic multi-functional device based on graphene nano-sheet pair arrays[J]. Optics Communications, 415, 130-134(2018).

    [30] Zhu A J, Qian Q Y, Yan Y et al. Ultrathin plasmonic quarter waveplate using broken rectangular annular metasurface[J]. Optics & Laser Technology, 92, 120-125(2017).

    Zhihao Yuan, Yu Xu, Bing Cao, Qinhua Wang. Broadband Transmission Infrared Light Modulator Based on Graphene Plasma[J]. Laser & Optoelectronics Progress, 2020, 57(23): 232301
    Download Citation