• Acta Optica Sinica
  • Vol. 44, Issue 17, 1732004 (2024)
Jingzhen Li*, Yi Cai, Xuanke Zeng, Xiaowei Lu..., Hongyi Chen, Shixiang Xu, Qifan Zhu and Yongle Zhu|Show fewer author(s)
Author Affiliations
  • College of Physics and Optoelectronic Engineering, Institute of Photonic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, Guangdong , China
  • show less
    DOI: 10.3788/AOS241177 Cite this Article Set citation alerts
    Jingzhen Li, Yi Cai, Xuanke Zeng, Xiaowei Lu, Hongyi Chen, Shixiang Xu, Qifan Zhu, Yongle Zhu. Review on Atomic Time Imaging (Invited)[J]. Acta Optica Sinica, 2024, 44(17): 1732004 Copy Citation Text show less
    References

    [1] Schardin H. Über die grenzen der hochfrequenz kinematographik[C], 1-29(1962).

    [2] Krausz F, Ivanov M. Attosecond physics[J]. Reviews of Modern Physics, 81, 163-234(2009).

    [3] Hentschel M, Kienberger R, Spielmann C et al. Attosecond metrology[J]. Nature, 414, 509-513(2001).

    [4] Mirkovic T, Ostroumov E E, Anna J M et al. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms[J]. Chemical Reviews, 117, 249-293(2017).

    [5] Zhang Y Y, Li X B, Fleming A M et al. UV-induced proton-coupled electron transfer in cyclic DNA miniduplexes[J]. Journal of the American Chemical Society, 138, 7395-7401(2016).

    [6] Herink G, Kurtz F, Jalali B et al. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules[J]. Science, 356, 50-54(2017).

    [7] Herink G, Jalali B, Ropers C et al. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate[J]. Nature Photonics, 10, 321-326(2016).

    [8] Kaluza M C, Santala M I K, Schreiber J et al. Time-sequence imaging of relativistic laser-plasma interactions using a novel two-color probe pulse[J]. Applied Physics B, 92, 475-479(2008).

    [9] Wang W, Li W, Liu J et al. High-brightness high-energy electron beams from a laser Wakefield accelerator via energy chirp control[J]. Physical Review Letters, 117, 124801(2016).

    [10] Matlis N H, Reed S, Bulanov S S et al. Snapshots of laser wakefields[J]. Nature Physics, 2, 749-753(2006).

    [11] Liu J S, Xia C Q, Wang W T et al. All-optical cascaded laser Wakefield accelerator using ionization-induced injection[J]. Physical Review Letters, 107, 035001(2011).

    [12] Chin C T, Lancée C, Borsboom J et al. Brandaris 128: a digital 25 million frames per second camera with 128 highly sensitive frames[J]. Review of Scientific Instruments, 74, 5026-5034(2003).

    [13] Etoh T G, Vo Le C, Hashishin Y et al. Evolution of ultra-high-speed CCD imagers[J]. Plasma and Fusion Research, 2, S1021(2008).

    [14] Hansen J W, Duguay M A. Ultra-high speed photography of picosecond light pulses[J]. Journal of the Society of Motion Picture and Television Engineers, 80, 73-77(1971).

    [15] Duguay M A, Mattick A T. Ultrahigh speed photography of picosecond light pulses and echoes[J]. Applied Optics, 10, 2162-2170(1971).

    [16] Chen S Q, Zhao J R, Gao F Y. A collinear CS2 picosecond optical gating[J]. Acta Optica Sinica, 1, 365-370(1981).

    [17] Gong Q H. Application of ultrafast nonlinear mesoscopic optics in optical information[C](2008).

    [18] Purwar H, Idlahcen S, Rozé C et al. Collinear, two-color optical Kerr effect shutter for ultrafast time-resolved imaging[J]. Optics Express, 22, 15778-15790(2014).

    [19] Li W H, Wang Z H, Wu Y E et al. Ultrafast optical gating techniques based on transient optical Kerr effect[J]. High Power Laser and Particle Beams, 28, 101005(2016).

    [20] Fujimoto M, Aoshima S, Hosoda M et al. Femtosecond time-resolved optical polarigraphy: imaging of the propagation dynamics of intense light in a medium[J]. Optics Letters, 24, 850-852(1999).

    [21] Tan W J, Zhou Z G, Lin A X et al. Instantaneous three-dimensional imaging using supercontinuum and ultrafast optical Kerr gate of tellurite glass[J]. Optical Engineering, 53, 043108(2014).

    [22] Fujino T, Fujima T, Tahara T. Picosecond time-resolved imaging by nonscanning fluorescence Kerr gate microscope[J]. Applied Physics Letters, 87, 131105(2005).

    [23] Symes D R, Wegner U, Ahlswede H C et al. Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect[J]. Applied Physics Letters, 96, 011109(2010).

    [24] Yan L H, Wang X F, Si J H et al. Time-resolved single-shot imaging of femtosecond laser induced filaments using supercontinuum and optical polarigraphy[J]. Applied Physics Letters, 100, 111107(2012).

    [25] Huang X M, Wang F, Lu B L et al. Modulation for giant Kerr nonlinear effect via orbital angular momentum exchange[J]. Acta Optica Sinica, 42, 2219002(2022).

    [26] Abramson N. Light-in-flight recording by holography[J]. Optics Letters, 3, 121-123(1978).

    [27] Abramson N. Light-in-flight recording: high-speed holographic motion pictures of ultrafast phenomena[J]. Applied Optics, 22, 215-219(1983).

    [28] Abramson N. Light-in-flight recording. 4: visualizing optical relativistic phenomena[J]. Applied Optics, 24, 3323-3329(1985).

    [29] Abramson N. Motion picture of short pulses[J]. Nature Photonics, 5, 389-390(2011).

    [30] Yan X L, Li J Z. Primary study of ultra-high-speed photography with holographic cohbrence shutters[J]. High Speed Photography and Photonics, 19, 264-268, 233(1990).

    [31] Awatsuji Y, Komatsu A, Yamagiwa M et al. Motion pictures of propagating ultrashort laser pulses[J]. Proceedings of SPIE, 5580, 543-550(2005).

    [32] Kubota T, Awatsuji Y. Femtosecond motion picture[J]. IEICE Electronics Express, 2, 298-304(2005).

    [33] Kakue T, Tosa K, Yuasa J et al. Digital light-in-flight recording by holography by use of a femtosecond pulsed laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 18, 479-485(2012).

    [34] Kakue T, Aihara M, Takimoto T et al. Moving picture recording and observation of visible femtosecond light pulse propagation[J]. Japanese Journal of Applied Physics, 50, 050205(2011).

    [35] Dantus M, Rosker M J, Zewail A H. Real-time femtosecond probing of “transition states” in chemical reactions[J]. Journal of Chemical Physics, 87, 2395-2397(1987).

    [36] Thomann I, Bahabad A, Liu X et al. Characterizing isolated attosecond pulses from hollow-core waveguides using multi-cycle driving pulses[J]. Optics Express, 17, 4611-4633(2009).

    [37] López-Martens R, Mauritsson J, Johnsson P et al. Characterization of high-order harmonic radiation on femtosecond and attosecond time scales[J]. Applied Physics B, 78, 835-840(2004).

    [38] Dal Conte S, Vidmar L, Golež D et al. Snapshots of the retarded interaction of charge carriers with ultrafast fluctuations in cuprates[J]. Nature Physics, 11, 421-426(2015).

    [39] Kim K H, Kim J G, Nozawa S et al. Direct observation of bond formation in solution with femtosecond X-ray scattering[J]. Nature, 518, 385-389(2015).

    [40] Sun J Y, Melnikov V A, Khan J I et al. Real-space imaging of carrier dynamics of materials surfaces by second-generation four-dimensional scanning ultrafast electron microscopy[J]. The Journal of Physical Chemistry Letters, 6, 3884-3890(2015).

    [41] Zürch M, Chang H T, Borja L J et al. Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium[J]. Nature Communications, 8, 15734(2017).

    [42] Li J Z, Guo Z H, Qin Y et al. Rashba effect and spin-dependent excitonic properties in chiral two-dimensional/three-dimensional composite perovskite films[J]. The Journal of Physical Chemistry Letters, 14, 11697-11703(2023).

    [43] Liu B X, Li J Z, Wang G et al. Lattice strain modulation toward efficient blue perovskite light-emitting diodes[J]. Science Advances, 8, eabq0138(2022).

    [44] Miao X F, Yao W Y, Chen R Z et al. Excimer-mediated ultrafast intermolecular nonradiative decay enables giant photothermal performance for optimized phototheranostic[J]. Advanced Materials, 35, 2301739(2023).

    [45] Sarantos C H, Heebner J E. Solid-state ultrafast all-optical streak camera enabling high-dynamic-range picosecond recording[J]. Optics Letters, 35, 1389-1391(2010).

    [46] Baker K L, Stewart R E, Steele P T et al. Solid-state framing camera with multiple time frames[J]. Applied Physics Letters, 103, 151111(2013).

    [47] Li Z Y, Zgadzaj R, Wang X M et al. Single-shot tomographic movies of evolving light-velocity objects[J]. Nature Communications, 5, 3085(2014).

    [48] Gao L, Liang J Y, Li C Y et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 516, 74-77(2014).

    [49] Liang J Y, Ma C, Zhu L R et al. Single-shot real-time video recording of a photonic Mach cone induced by a scattered light pulse[J]. Science Advances, 3, e1601814(2017).

    [50] Nakagawa K, Iwasaki A, Oishi Y et al. Sequentially timed all-optical mapping photography (STAMP)[J]. Nature Photonics, 8, 695-700(2014).

    [51] Zeng X K, Zheng S Q, Cai Y et al. High-spatial-resolution ultrafast framing imaging at 15 trillion frames per second by optical parametric amplification[J]. Advanced Photonics, 2, 056002(2020).

    [52] Zhu Q F, Cai Y, Zeng X K et al. FISI: frequency domain integration sequential imaging at 1.26×1013 frames per second and 108 lines per millimeter[J]. Optics Express, 30, 27429-27438(2022).

    [53] Zhu Y L, Zeng X K, Cai Y et al. All-optical high spatial-temporal resolution photography with raster principle at 2 trillion frames per second[J]. Optics Express, 29, 27298-27308(2021).

    [54] Zhu Y L, Zeng X K, Ling W J et al. Design for ultrafast raster photography with a large amount of spatio-temporal information[J]. Photonics, 11, 24(2023).

    [55] di Francia G T. Degree of freedom of an image[J]. Journal of the Optical Society of America, 59, 799-804(1969).

    [56] Jin S R, Li J Z. Assessing the information amount of an optical system with the degrees of freedom of imaging[J]. Acta Photonica Sinica, 21, 216-221(1992).

    [57] Li J Z, Tan X X, Gong X D et al. Studies on degree of freedom for high-speed photography[J]. Proceedings of SPIE, 5580, 805-810(2005).

    [58] Lauve M V. Die freiheitsgrade von strahlenbündeln[J]. Annalen Der Physik, 349, 1197-1212(1914).

    [59] Lukosz W. Optical systems with resolving powers exceeding the classical limit[J]. Journal of the Optical Society of America, 56, 1463-1471(1966).

    [60] Kryzhko V V, Pergarment M I, Pergarnent M M et al. Actual properties of CCD-camera[J]. Proceedings of SPIE, 4948, 59-62(2003).

    [61] Wang X L, Zhai H C, Mu G G. Pulsed digital holography system recording ultrafast process of the femtosecond order[J]. Optics Letters, 31, 1636-1638(2006).

    [62] Cavalieri A, Fritz D, Lee S et al. Clocking femtosecond X rays[J]. Physical Review Letters, 94, 114801(2005).

    [63] Hansel T, Steinmeyer G, Grunwald R et al. Synthesized femtosecond laser pulse source for two-wavelength contouring with simultaneously recorded digital holograms[J]. Optics Express, 17, 2686-2695(2009).

    [64] Fang X Y, Yang H C, Yao W Z et al. High-dimensional orbital angular momentum multiplexing nonlinear holography[J]. Advanced Photonics, 3, 015001(2021).

    [65] Defienne H, Ndagano B, Lyons A et al. Polarization entanglement-enabled quantum holography[J]. Nature Physics, 17, 591-597(2021).

    [66] Centurion M, Pu Y, Psaltis D. Femtosecond holography[J]. Proceedings of SPIE, 5580, 529-534(2005).

    [67] Centurion M, Liu Z W, Steckman G et al. Holographic techniques for recording ultrafast events[J]. Proceedings of SPIE, 4737, 44-50(2002).

    [68] Wang S B, Li J Z, Lu X W. Multi-frame digital hologram based on azimuth encoding method[J]. Proceedings of SPIE, 6621, 66210E(2008).

    [69] Chen G H, Li J F, Peng Q X et al. All-optical coaxial framing photography using parallel coherence shutters[J]. Optics Letters, 42, 415-418(2017).

    [70] Dong P, Reed S A, Yi S A et al. Holographic visualization of laser wakefields[J]. New Journal of Physics, 12, 045016(2010).

    [71] Liang J Y, Zhu L R, Wang L V. Single-shot real-time femtosecond imaging of temporal focusing[J]. Light: Science & Applications, 7, 42(2018).

    [72] Lu Y, Wong T T W, Chen F et al. Compressed ultrafast spectral-temporal photography[J]. Physical Review Letters, 122, 193904(2019).

    [73] Yin F, Meng Y Z, Yang Q et al. High precision reconstruction for compressed femtosecond dynamics images based on the TVAL3 algorithm[J]. Optical Materials Express, 12, 4435-4443(2022).

    [74] Wang P, Liang J Y, Wang L V. Single-shot ultrafast imaging attaining 70 trillion frames per second[J]. Nature Communications, 11, 2091(2020).

    [75] Yang C S, Qi D L, Wang X et al. Optimizing codes for compressed ultrafast photography by the genetic algorithm[J]. Optica, 5, 147-151(2018).

    [76] Zeng X K, Lu X W, Wang C Y et al. Review and prospect of single-shot ultrafast optical imaging by active detection[J]. Ultrafast Science, 3, 20(2023).

    [77] Ehn A, Bood J, Li Z M et al. FRAME: femtosecond videography for atomic and molecular dynamics[J]. Light: Science & Applications, 6, e17045(2017).

    [78] Li J Z. Multiframe high-speed holography adapting a grating coded reference beam[J]. Proceedings of SPIE, 2869, 807-809(1997).

    [79] Tamamitsu M, Nakagawa K, Horisaki R et al. Design for sequentially timed all-optical mapping photography with optimum temporal performance[J]. Optics Letters, 40, 633-636(2015).

    [80] Suzuki T, Isa F, Fujii L et al. Sequentially timed all-optical mapping photography (STAMP) utilizing spectral filtering[J]. Optics Express, 23, 30512-30522(2015).

    [81] Suzuki T, Hida R, Yamaguchi Y et al. Single-shot 25-frame burst imaging of ultrafast phase transition of Ge2Sb2Te5 with a sub-picosecond resolution[J]. Applied Physics Express, 10, 092502(2017).

    [82] Nemoto H, Suzuki T, Kannari F. Single-shot ultrafast burst imaging using an integral field spectroscope with a microlens array[J]. Optics Letters, 45, 5004-5007(2020).

    [83] Lu X W, Li J Z, Chen H Y et al. A simple and compact design for multi-chromatic channel digital holography to record femtosecond order processes[J]. Journal of Optics, 14, 065205(2012).

    [84] Yao Y H, He Y L, Qi D L et al. Single-shot real-time ultrafast imaging of femtosecond laser fabrication[J]. ACS Photonics, 8, 738-744(2021).

    [85] Zeng X K, Cai Y, Lu X W et al. High gain and high spatial resolution optical parametric amplification imaging under continuous-wave laser irradiation[J]. Laser Physics, 24, 045401(2014).

    [86] Zeng X K, Cai Y, Chen W T et al. High spatially resolved idler image with a compact noncollinear optical parametric amplifier using a CW laser as signal[J]. IEEE Photonics Journal, 7, 6804107(2015).

    [87] Zeng X K, Cai Y, Chen W T et al. High resolved non-collinear idler imaging via type-Ⅱ angular noncritical phase-matching[J]. IEEE Photonics Technology Letters, 28, 2685-2688(2016).

    [88] Zeng X K, Zheng S Q, Cai Y et al. Generation and imaging of a tunable ultrafast intensity-rotating optical field with a cycle down to femtosecond region[J]. High Power Laser Science and Engineering, 8, e3(2020).

    [89] Zheng M J, Chen Z K, Wang C Y et al. The temporal resolutions of the ultrafast imaging technologies based on nonlinear optics[J]. Journal of Shenzhen University Science and Engineering, 39, 383-389(2022).

    [90] Park J, Gao L. Continuously streaming compressed high-speed photography using time delay integration[J]. Optica, 8, 1620-1623(2021).

    [91] Gong Z. High speed photography in 2000[C], 4(1982).

    [92] Villeneuve D M, Hockett P, Vrakking M J J et al. Coherent imaging of an attosecond electron wave packet[J]. Science, 356, 1150-1153(2017).

    [93] Xie W H, Yan J Q, Li M et al. Picometer-resolved photoemission position within the molecule by strong-field photoelectron holography[J]. Physical Review Letters, 127, 263202(2021).

    [94] Ryabov A, Thurner J W, Nabben D et al. Attosecond metrology in a continuous-beam transmission electron microscope[J]. Science Advances, 6, eabb1393(2020).

    [95] Nabben D, Kuttruff J, Stolz L et al. Attosecond electron microscopy of sub-cycle optical dynamics[J]. Nature, 619, 63-67(2023).

    Jingzhen Li, Yi Cai, Xuanke Zeng, Xiaowei Lu, Hongyi Chen, Shixiang Xu, Qifan Zhu, Yongle Zhu. Review on Atomic Time Imaging (Invited)[J]. Acta Optica Sinica, 2024, 44(17): 1732004
    Download Citation