[1] Schardin H. Über die grenzen der hochfrequenz kinematographik[C], 1-29(1962).
[2] Krausz F, Ivanov M. Attosecond physics[J]. Reviews of Modern Physics, 81, 163-234(2009).
[3] Hentschel M, Kienberger R, Spielmann C et al. Attosecond metrology[J]. Nature, 414, 509-513(2001).
[4] Mirkovic T, Ostroumov E E, Anna J M et al. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms[J]. Chemical Reviews, 117, 249-293(2017).
[5] Zhang Y Y, Li X B, Fleming A M et al. UV-induced proton-coupled electron transfer in cyclic DNA miniduplexes[J]. Journal of the American Chemical Society, 138, 7395-7401(2016).
[6] Herink G, Kurtz F, Jalali B et al. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules[J]. Science, 356, 50-54(2017).
[7] Herink G, Jalali B, Ropers C et al. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate[J]. Nature Photonics, 10, 321-326(2016).
[8] Kaluza M C, Santala M I K, Schreiber J et al. Time-sequence imaging of relativistic laser-plasma interactions using a novel two-color probe pulse[J]. Applied Physics B, 92, 475-479(2008).
[9] Wang W, Li W, Liu J et al. High-brightness high-energy electron beams from a laser Wakefield accelerator via energy chirp control[J]. Physical Review Letters, 117, 124801(2016).
[10] Matlis N H, Reed S, Bulanov S S et al. Snapshots of laser wakefields[J]. Nature Physics, 2, 749-753(2006).
[11] Liu J S, Xia C Q, Wang W T et al. All-optical cascaded laser Wakefield accelerator using ionization-induced injection[J]. Physical Review Letters, 107, 035001(2011).
[12] Chin C T, Lancée C, Borsboom J et al. Brandaris 128: a digital 25 million frames per second camera with 128 highly sensitive frames[J]. Review of Scientific Instruments, 74, 5026-5034(2003).
[13] Etoh T G, Vo Le C, Hashishin Y et al. Evolution of ultra-high-speed CCD imagers[J]. Plasma and Fusion Research, 2, S1021(2008).
[14] Hansen J W, Duguay M A. Ultra-high speed photography of picosecond light pulses[J]. Journal of the Society of Motion Picture and Television Engineers, 80, 73-77(1971).
[15] Duguay M A, Mattick A T. Ultrahigh speed photography of picosecond light pulses and echoes[J]. Applied Optics, 10, 2162-2170(1971).
[16] Chen S Q, Zhao J R, Gao F Y. A collinear CS2 picosecond optical gating[J]. Acta Optica Sinica, 1, 365-370(1981).
[17] Gong Q H. Application of ultrafast nonlinear mesoscopic optics in optical information[C](2008).
[18] Purwar H, Idlahcen S, Rozé C et al. Collinear, two-color optical Kerr effect shutter for ultrafast time-resolved imaging[J]. Optics Express, 22, 15778-15790(2014).
[19] Li W H, Wang Z H, Wu Y E et al. Ultrafast optical gating techniques based on transient optical Kerr effect[J]. High Power Laser and Particle Beams, 28, 101005(2016).
[20] Fujimoto M, Aoshima S, Hosoda M et al. Femtosecond time-resolved optical polarigraphy: imaging of the propagation dynamics of intense light in a medium[J]. Optics Letters, 24, 850-852(1999).
[21] Tan W J, Zhou Z G, Lin A X et al. Instantaneous three-dimensional imaging using supercontinuum and ultrafast optical Kerr gate of tellurite glass[J]. Optical Engineering, 53, 043108(2014).
[22] Fujino T, Fujima T, Tahara T. Picosecond time-resolved imaging by nonscanning fluorescence Kerr gate microscope[J]. Applied Physics Letters, 87, 131105(2005).
[23] Symes D R, Wegner U, Ahlswede H C et al. Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect[J]. Applied Physics Letters, 96, 011109(2010).
[24] Yan L H, Wang X F, Si J H et al. Time-resolved single-shot imaging of femtosecond laser induced filaments using supercontinuum and optical polarigraphy[J]. Applied Physics Letters, 100, 111107(2012).
[25] Huang X M, Wang F, Lu B L et al. Modulation for giant Kerr nonlinear effect via orbital angular momentum exchange[J]. Acta Optica Sinica, 42, 2219002(2022).
[26] Abramson N. Light-in-flight recording by holography[J]. Optics Letters, 3, 121-123(1978).
[27] Abramson N. Light-in-flight recording: high-speed holographic motion pictures of ultrafast phenomena[J]. Applied Optics, 22, 215-219(1983).
[28] Abramson N. Light-in-flight recording. 4: visualizing optical relativistic phenomena[J]. Applied Optics, 24, 3323-3329(1985).
[29] Abramson N. Motion picture of short pulses[J]. Nature Photonics, 5, 389-390(2011).
[30] Yan X L, Li J Z. Primary study of ultra-high-speed photography with holographic cohbrence shutters[J]. High Speed Photography and Photonics, 19, 264-268, 233(1990).
[31] Awatsuji Y, Komatsu A, Yamagiwa M et al. Motion pictures of propagating ultrashort laser pulses[J]. Proceedings of SPIE, 5580, 543-550(2005).
[32] Kubota T, Awatsuji Y. Femtosecond motion picture[J]. IEICE Electronics Express, 2, 298-304(2005).
[33] Kakue T, Tosa K, Yuasa J et al. Digital light-in-flight recording by holography by use of a femtosecond pulsed laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 18, 479-485(2012).
[34] Kakue T, Aihara M, Takimoto T et al. Moving picture recording and observation of visible femtosecond light pulse propagation[J]. Japanese Journal of Applied Physics, 50, 050205(2011).
[35] Dantus M, Rosker M J, Zewail A H. Real-time femtosecond probing of “transition states” in chemical reactions[J]. Journal of Chemical Physics, 87, 2395-2397(1987).
[36] Thomann I, Bahabad A, Liu X et al. Characterizing isolated attosecond pulses from hollow-core waveguides using multi-cycle driving pulses[J]. Optics Express, 17, 4611-4633(2009).
[37] López-Martens R, Mauritsson J, Johnsson P et al. Characterization of high-order harmonic radiation on femtosecond and attosecond time scales[J]. Applied Physics B, 78, 835-840(2004).
[38] Dal Conte S, Vidmar L, Golež D et al. Snapshots of the retarded interaction of charge carriers with ultrafast fluctuations in cuprates[J]. Nature Physics, 11, 421-426(2015).
[39] Kim K H, Kim J G, Nozawa S et al. Direct observation of bond formation in solution with femtosecond X-ray scattering[J]. Nature, 518, 385-389(2015).
[40] Sun J Y, Melnikov V A, Khan J I et al. Real-space imaging of carrier dynamics of materials surfaces by second-generation four-dimensional scanning ultrafast electron microscopy[J]. The Journal of Physical Chemistry Letters, 6, 3884-3890(2015).
[41] Zürch M, Chang H T, Borja L J et al. Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium[J]. Nature Communications, 8, 15734(2017).
[42] Li J Z, Guo Z H, Qin Y et al. Rashba effect and spin-dependent excitonic properties in chiral two-dimensional/three-dimensional composite perovskite films[J]. The Journal of Physical Chemistry Letters, 14, 11697-11703(2023).
[43] Liu B X, Li J Z, Wang G et al. Lattice strain modulation toward efficient blue perovskite light-emitting diodes[J]. Science Advances, 8, eabq0138(2022).
[44] Miao X F, Yao W Y, Chen R Z et al. Excimer-mediated ultrafast intermolecular nonradiative decay enables giant photothermal performance for optimized phototheranostic[J]. Advanced Materials, 35, 2301739(2023).
[45] Sarantos C H, Heebner J E. Solid-state ultrafast all-optical streak camera enabling high-dynamic-range picosecond recording[J]. Optics Letters, 35, 1389-1391(2010).
[46] Baker K L, Stewart R E, Steele P T et al. Solid-state framing camera with multiple time frames[J]. Applied Physics Letters, 103, 151111(2013).
[47] Li Z Y, Zgadzaj R, Wang X M et al. Single-shot tomographic movies of evolving light-velocity objects[J]. Nature Communications, 5, 3085(2014).
[48] Gao L, Liang J Y, Li C Y et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 516, 74-77(2014).
[49] Liang J Y, Ma C, Zhu L R et al. Single-shot real-time video recording of a photonic Mach cone induced by a scattered light pulse[J]. Science Advances, 3, e1601814(2017).
[50] Nakagawa K, Iwasaki A, Oishi Y et al. Sequentially timed all-optical mapping photography (STAMP)[J]. Nature Photonics, 8, 695-700(2014).
[51] Zeng X K, Zheng S Q, Cai Y et al. High-spatial-resolution ultrafast framing imaging at 15 trillion frames per second by optical parametric amplification[J]. Advanced Photonics, 2, 056002(2020).
[52] Zhu Q F, Cai Y, Zeng X K et al. FISI: frequency domain integration sequential imaging at 1.26×1013 frames per second and 108 lines per millimeter[J]. Optics Express, 30, 27429-27438(2022).
[53] Zhu Y L, Zeng X K, Cai Y et al. All-optical high spatial-temporal resolution photography with raster principle at 2 trillion frames per second[J]. Optics Express, 29, 27298-27308(2021).
[54] Zhu Y L, Zeng X K, Ling W J et al. Design for ultrafast raster photography with a large amount of spatio-temporal information[J]. Photonics, 11, 24(2023).
[55] di Francia G T. Degree of freedom of an image[J]. Journal of the Optical Society of America, 59, 799-804(1969).
[56] Jin S R, Li J Z. Assessing the information amount of an optical system with the degrees of freedom of imaging[J]. Acta Photonica Sinica, 21, 216-221(1992).
[57] Li J Z, Tan X X, Gong X D et al. Studies on degree of freedom for high-speed photography[J]. Proceedings of SPIE, 5580, 805-810(2005).
[58] Lauve M V. Die freiheitsgrade von strahlenbündeln[J]. Annalen Der Physik, 349, 1197-1212(1914).
[59] Lukosz W. Optical systems with resolving powers exceeding the classical limit[J]. Journal of the Optical Society of America, 56, 1463-1471(1966).
[60] Kryzhko V V, Pergarment M I, Pergarnent M M et al. Actual properties of CCD-camera[J]. Proceedings of SPIE, 4948, 59-62(2003).
[61] Wang X L, Zhai H C, Mu G G. Pulsed digital holography system recording ultrafast process of the femtosecond order[J]. Optics Letters, 31, 1636-1638(2006).
[62] Cavalieri A, Fritz D, Lee S et al. Clocking femtosecond X rays[J]. Physical Review Letters, 94, 114801(2005).
[63] Hansel T, Steinmeyer G, Grunwald R et al. Synthesized femtosecond laser pulse source for two-wavelength contouring with simultaneously recorded digital holograms[J]. Optics Express, 17, 2686-2695(2009).
[64] Fang X Y, Yang H C, Yao W Z et al. High-dimensional orbital angular momentum multiplexing nonlinear holography[J]. Advanced Photonics, 3, 015001(2021).
[65] Defienne H, Ndagano B, Lyons A et al. Polarization entanglement-enabled quantum holography[J]. Nature Physics, 17, 591-597(2021).
[66] Centurion M, Pu Y, Psaltis D. Femtosecond holography[J]. Proceedings of SPIE, 5580, 529-534(2005).
[67] Centurion M, Liu Z W, Steckman G et al. Holographic techniques for recording ultrafast events[J]. Proceedings of SPIE, 4737, 44-50(2002).
[68] Wang S B, Li J Z, Lu X W. Multi-frame digital hologram based on azimuth encoding method[J]. Proceedings of SPIE, 6621, 66210E(2008).
[69] Chen G H, Li J F, Peng Q X et al. All-optical coaxial framing photography using parallel coherence shutters[J]. Optics Letters, 42, 415-418(2017).
[70] Dong P, Reed S A, Yi S A et al. Holographic visualization of laser wakefields[J]. New Journal of Physics, 12, 045016(2010).
[71] Liang J Y, Zhu L R, Wang L V. Single-shot real-time femtosecond imaging of temporal focusing[J]. Light: Science & Applications, 7, 42(2018).
[72] Lu Y, Wong T T W, Chen F et al. Compressed ultrafast spectral-temporal photography[J]. Physical Review Letters, 122, 193904(2019).
[73] Yin F, Meng Y Z, Yang Q et al. High precision reconstruction for compressed femtosecond dynamics images based on the TVAL3 algorithm[J]. Optical Materials Express, 12, 4435-4443(2022).
[74] Wang P, Liang J Y, Wang L V. Single-shot ultrafast imaging attaining 70 trillion frames per second[J]. Nature Communications, 11, 2091(2020).
[75] Yang C S, Qi D L, Wang X et al. Optimizing codes for compressed ultrafast photography by the genetic algorithm[J]. Optica, 5, 147-151(2018).
[76] Zeng X K, Lu X W, Wang C Y et al. Review and prospect of single-shot ultrafast optical imaging by active detection[J]. Ultrafast Science, 3, 20(2023).
[77] Ehn A, Bood J, Li Z M et al. FRAME: femtosecond videography for atomic and molecular dynamics[J]. Light: Science & Applications, 6, e17045(2017).
[78] Li J Z. Multiframe high-speed holography adapting a grating coded reference beam[J]. Proceedings of SPIE, 2869, 807-809(1997).
[79] Tamamitsu M, Nakagawa K, Horisaki R et al. Design for sequentially timed all-optical mapping photography with optimum temporal performance[J]. Optics Letters, 40, 633-636(2015).
[80] Suzuki T, Isa F, Fujii L et al. Sequentially timed all-optical mapping photography (STAMP) utilizing spectral filtering[J]. Optics Express, 23, 30512-30522(2015).
[81] Suzuki T, Hida R, Yamaguchi Y et al. Single-shot 25-frame burst imaging of ultrafast phase transition of Ge2Sb2Te5 with a sub-picosecond resolution[J]. Applied Physics Express, 10, 092502(2017).
[82] Nemoto H, Suzuki T, Kannari F. Single-shot ultrafast burst imaging using an integral field spectroscope with a microlens array[J]. Optics Letters, 45, 5004-5007(2020).
[83] Lu X W, Li J Z, Chen H Y et al. A simple and compact design for multi-chromatic channel digital holography to record femtosecond order processes[J]. Journal of Optics, 14, 065205(2012).
[84] Yao Y H, He Y L, Qi D L et al. Single-shot real-time ultrafast imaging of femtosecond laser fabrication[J]. ACS Photonics, 8, 738-744(2021).
[85] Zeng X K, Cai Y, Lu X W et al. High gain and high spatial resolution optical parametric amplification imaging under continuous-wave laser irradiation[J]. Laser Physics, 24, 045401(2014).
[86] Zeng X K, Cai Y, Chen W T et al. High spatially resolved idler image with a compact noncollinear optical parametric amplifier using a CW laser as signal[J]. IEEE Photonics Journal, 7, 6804107(2015).
[87] Zeng X K, Cai Y, Chen W T et al. High resolved non-collinear idler imaging via type-Ⅱ angular noncritical phase-matching[J]. IEEE Photonics Technology Letters, 28, 2685-2688(2016).
[88] Zeng X K, Zheng S Q, Cai Y et al. Generation and imaging of a tunable ultrafast intensity-rotating optical field with a cycle down to femtosecond region[J]. High Power Laser Science and Engineering, 8, e3(2020).
[89] Zheng M J, Chen Z K, Wang C Y et al. The temporal resolutions of the ultrafast imaging technologies based on nonlinear optics[J]. Journal of Shenzhen University Science and Engineering, 39, 383-389(2022).
[90] Park J, Gao L. Continuously streaming compressed high-speed photography using time delay integration[J]. Optica, 8, 1620-1623(2021).
[91] Gong Z. High speed photography in 2000[C], 4(1982).
[92] Villeneuve D M, Hockett P, Vrakking M J J et al. Coherent imaging of an attosecond electron wave packet[J]. Science, 356, 1150-1153(2017).
[93] Xie W H, Yan J Q, Li M et al. Picometer-resolved photoemission position within the molecule by strong-field photoelectron holography[J]. Physical Review Letters, 127, 263202(2021).
[94] Ryabov A, Thurner J W, Nabben D et al. Attosecond metrology in a continuous-beam transmission electron microscope[J]. Science Advances, 6, eabb1393(2020).
[95] Nabben D, Kuttruff J, Stolz L et al. Attosecond electron microscopy of sub-cycle optical dynamics[J]. Nature, 619, 63-67(2023).