• Infrared and Laser Engineering
  • Vol. 49, Issue 8, 20201025 (2020)
Linhua Gao, Yanxia Cui, Qiangbing Liang, Yanzhen Liu, Guohui Li, Mingming Fan, and Yuying Hao
Author Affiliations
  • Key Laboratory of Advanced Transducers and Intelligent Control System (Ministry of Education), College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
  • show less
    DOI: 10.3788/IRLA20201025 Cite this Article
    Linhua Gao, Yanxia Cui, Qiangbing Liang, Yanzhen Liu, Guohui Li, Mingming Fan, Yuying Hao. Research progress in metal-inorganic semiconductor-metal photodetectors[J]. Infrared and Laser Engineering, 2020, 49(8): 20201025 Copy Citation Text show less
    References

    [1] S L Tsai, J S Wu, H J Lin. Simulation and design of InGaAsN metal-semiconductor-metal photodetectors for long wavelength optical communications. Physica Status Solidi (c), 5, 2167-2169(2008).

    [2] H Park, Y P Dan, K Seo. Filter-free image sensor pixels comprising silicon nanowires with selective color absorption. Nano Letters, 14, 1804-1809(2014).

    [3] Li Xue, 薛莉, 翟东升, Dongsheng Zhai, 李祝莲, Zhulian Li. Signal-to-noise ratio analysis on APD arrays in laser ranging. Infrared and Laser Engineering, 46, 0306001(2017).

    [4] G A Rao, S P Mahulikar. New criterion for aircraft susceptibility to infrared guided missiles. Aerospace Science & Technology, 9, 701-712(2005).

    [5] Y Z Chiou, Y K Su, S J Chang. High detectivity InGaN-GaN multiquantum well p-n junction photodiodes. IEEE Journal of Quantum Electronics, 39, 681-685(2003).

    [6] G Dehlinger, S J Koester, J D Schaub. High-speed Germanium-on-SOI lateral PIN photodiodes. Photonics Technology Letters IEEE, 16, 2547-2549(2004).

    [7] 史衍丽, Yanli Shi, Qian Guo, 郭骞, Long Li, 李龙. Visible-extended InP/InGaAs wide spectrum response infrared detectors. Infrared and Laser Engineering, 44, 3177-3180(2015).

    [8] 宋海兰, Hailan Song, 黄辉, Hui Huang, Hailin Cui, 崔海林. InGaAs/Si avalanche photodiodes. Semiconductor Optoelectronics, 31, 702-704(2010).

    [9] M B Reine, J W Marciniec, K K Wong. HgCdTe MWIR back-illuminated electron-initiated avalanche photodiode arrays. Journal of Electronic Materials, 36, 1059-1067(2007).

    [10] Jianliang Zhang, 张健亮, 陈康民, Kangmin Chen. The principle process and manufacturing of PIN junction photodiode. China Integrated Circuit, 72-74(2004).

    [11] Chengzhu Yang, 杨成珠, Qingwen Li, 李庆文. Silicon photodetector. Semiconductor Technology, 6, 57-63(1983).

    [12] Omnès F, Monroy E, Reverchon J L. Wide bgap UV photodetects: a sht review of devices applications[C]Proceedings of SPIE The International Society f Optical Engineering, 2007, 6473: 6473E.

    [13] Jiatong Wei, 魏佳童, 陈立伟, Liwei Chen, Haifan Hu, 胡海帆. An advanced integrated avalanche photodiode with Si and Ge material. Infrared and Laser Engineering, 45, S120002(2016).

    [14] S M Sze, D J Coleman, A Loya. Current transport in metal-semiconductor-metal (MSM) structures. Solid-State Electronics, 14, 1209-1218(1971).

    [15] Y Chen, S Williamson, T Brock. 375-GHz-bandwidth photoconductive detector. Applied Physics Letters, 59, 1984-1986(1991).

    [16] F W Smith, H Q Le, V Diadiuk. Picosecond GaAs-based photoconductive optoelectronic detectors. Applied Physics Letters, 54, 890-892(1989).

    [17] W Roth, H Schumacher, J Kluge. The DSI diode-A fast large-area optoelectronic detector. IEEE Transactions on Electron Devices, 32, 1034-1036(1985).

    [18] R H Yuang, J L Shieh, J I Chyi. Overall performance improvement in GaAs MSM photodetectors by using recessed-cathode structure. IEEE Photonics Technology Letters, 9, 226-228(1997).

    [19] 李勇, Yong Li, 李刚, Gang Li, Hongbin Shen, 沈洪斌. Design and simulation research of InGaAs-MSM photodetector. Journal of Applied Optics, 37, 651-656(2016).

    [20] D L Rogers, J M Woodall, G D Pettit. VIA-8 high-performance GaInAs interdigitated-metal- semiconductor-metal (IMSM) 1.3-μm photodetector grown on a GaAs substrate. IEEE Transactions on Electron Devices, 34, 2383-2384(1987).

    [21] Bassous E, Scheuermann M, Kesan V P, et al. A highspeed silicon metalsemiconductmetal photodetect fully integrable with (Bi) CMOS circuits[C]International Electron Devices Meeting 1991[Technical Digest], 1991: 187190.

    [22] S Alexandrou, C C Wang, T Y Hsiang. A 75 GHz silicon metal‐semiconductor‐metal Schottky photodiode. Applied Physics Letters, 62, 2507-2509(1993).

    [23] J P Mondia, R Sharma, J Schaefer. An electrodynamically confined single ZnO tetrapod laser. Applied Physics Letters, 93, 121102(2008).

    [24] Ü Özgür, Y I Alivov, C Liu. A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 98, 041301(2005).

    [25] W J Zhou, K J Jin, H Z Guo. Electrode effect on high-detectivity ultraviolet photodetectors based on perovskite oxides. Journal of Applied Physics, 114, 224503(2013).

    [26] K Wu, Y H Zhan, C Zhang. Strong and highly asymmetrical optical absorption in conformal metal-semiconductor-metal grating system for plasmonic hot-electron photodetection application. Scientific Reports, 5, 14304(2015).

    [27] T Y Zhai, L Li, X Wang. Recent Developments in One-Dimensional Inorganic Nanostructures for Photodetectors. Advanced Functional Materials, 20, 4233-4248(2010).

    [28] T Sugeta, T Urisu, S Sakata. Metal-semiconductor-metal photodetector for high-speed optoelectronic circuits. Japanese Journal of Applied Physics, 19, 459-464(1980).

    [30] G Gibbons, S M Sze. Avalanche breakdown in read diodes and pin diodes. Solid-State Electronics, 11, 225-232(1968).

    [31] T Katsume, M Hiramoto, M Yokoyama. Photocurrent multiplication in naphthalene tetracarboxylic anhydride film at room temperature. Applied Physics Letters, 69, 3722-3724(1996).

    [32] L L Li, F J Zhang, J Wang. Achieving EQE of 16, 700% in P3HT:PC71BM based photodetectors by trap-assisted photomultiplication. Scientific Reports, 5, 9181(2015).

    [33] W B Wang, F J Zhang, H T Bai. Photomultiplication photodetectors with P3HT:fullerene-free material as the active layers exhibiting a broad response. Nanoscale, 8, 5578-5586(2016).

    [34] H Schumacher, H P Leblanc, J Soole. An investigation of the optoelectronic response of GaAs/InGaAs MSM photodetectors. IEEE Electron Device Letters, 9, 607-609(1988).

    [35] Soole J B D, Schumacher H, Esagui R, et al. Waveguide integrated MSM photodetect f the 1.3 μm1.6 μm wavelength range[C]Electron Devices Meeting 1988[Technical Digest], 1988: 483486.

    [36] Y Zhang, W Deng, X Zhang. In situ integration of squaraine-nanowire-array-based Schottky-type photodetectors with enhanced switching performance. ACS Applied Materials & Interfaces, 5, 12288-12294(2013).

    [37] Wei Li, J G Valentine. Harvesting the loss: surface plasmon-based hot electron photodetection. Nanophotonics, 6, 177-191(2016).

    [38] M L Brongersma, N J Halas, P Nordlander. Plasmon-induced hot carrier science and technology. Nature Nanotechnology, 10, 25-34(2015).

    [39] M Casalino, G Coppola, Rue R M La. State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths. Laser & Photonics Reviews, 10, 895-921(2016).

    [40] S M Sze, C R Crowell, G P Carey. Hot-Electron Transport in Semiconductor-Metal-Semiconductor Structures. Journal of Applied Physics, 37, 2690-2695(1966).

    [41] F M Wang, N A Melosh. Plasmonic energy collection through hot carrier extraction. Nano Letters, 11, 5426-5430(2011).

    [42] H Chalabi, D Schoen, M L Brongersma. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Letters, 14, 1374-1380(2014).

    [43] T Gong, J N Munday. Angle-independent hot carrier generation and collection using transparent conducting oxides. Nano Letters, 15, 147-152(2015).

    [44] Kosonocky W F. Review of Schottkybarrier imager technology[C]Infrared Detects Focal Plane Arrays. International Society f Optics Photonics, 1990, 1308: 227.

    [45] Biskina S V, Zhou J W, Hsu W C, et al. Limiting efficiencies of solar energy conversion photodetection via internal emission of hot electrons hot holes in gold[C]Infrared Remote Sensing Instrumentation XXⅢ. International Society f Optics Photonics, 2015, 9608: 960816.

    [46] J N Munday, T Gong. Materials for hot carrier plasmonics[Invited]. Optical Materials Express, 5, 2501-2512(2015).

    [47] Zhiqi Li, 李志奇, 王庆康, Qingkang Wang, 李晓明, Xiaoming Li. DC photoelectric properties of new type GaAs MSM photodiode. Shanghai Semiconductor, 1-4(1990).

    [48] M V Rao, P K Bhattacharya, C Y Chen. Low-noise In0.53Ga0.47As:Fe photoconductive detectors for optical communication. IEEE Transactions on Electron Devices, 33, 67-71(2005).

    [49] H L Huang, Y N Xie, W F Yang. Low-dark-current TiO2 MSM UV photodetectors with Pt Schottky contacts. IEEE Electron Device Letters, 32, 530-532(2011).

    [50] Qingkang Wang, 王庆康, Sheng Feng, 冯胜. Dark current property of GaAs MSM photodetectors. Semiconductor Optoelectronics, 336-338(1995).

    [51] S Y Wang, D M Bloom. 100 GHz bandwidth planar GaAs Schottky photodiode. Electronics Letters, 19, 554-555(1983).

    [52] Zeghbroeck B J Van, W Patrick, J M Halbout. 105-GHz bandwidth metal-semiconductor-metal photodiode. IEEE Electron Device Letters, 9, 527-529(1988).

    [53] S Y Chou, Y Liu, W Khalil. Ultrafast nanoscale metal-semiconductor-metal photodetectors on bulk and low-temperature grown GaAs. Applied Physics Letters, 61, 819-821(1992).

    [54] Nikolic P L, Gvozdic D M, Radunovic J B. Pulse response of a resonant cavity enhanced metalsemiconductmetal photodetect[C]21st International Conference on Microelectronics. IEEE, 1997, 1: 327330.

    [55] A Karar, N Das, C L Tan. High-responsivity plasmonics-based GaAs metal-semiconductor-metal photodetectors. Applied Physics Letters, 99, 133112(2011).

    [56] B Nabet, M Currie, P Dianat. High-speed, high-sensitivity optoelectronic device with bilayer electron and hole charge plasma. ACS Photonics, 1, 560-569(2014).

    [57] C T Lee, H Y Lee. Surface passivated function of GaAs MSM-PDs using photoelectrochemical oxidation method. IEEE Photonics Technology Letters, 17, 462-464(2005).

    [58] R Sharaf, O Daneshmandi, R Ghayour. A new GaAs metal-semiconductor-metal photodetector based on hybrid plasmonic structure to improve the optical and electrical responses. Plasmonics, 11, 441-448(2015).

    [59] P Neutens, Dorpe P Van, Vlaminck I De. Electrical detection of confined gap plasmons in metal-insulator-metal waveguides. Nature Photonics, 3, 283-286(2009).

    [61] Litvin K I, Burm J, Woodard D W, et al. Highspeed MSM photodetects f millimeter waves[C]Optical Technology f Microwave Applications VI Optoelectronic Signal Processing f PhasedArray Antennas Ⅲ. International Society f Optics Photonics, 1992, 1703: 313321.

    [62] B Nabet. A heterojunction metal-semiconductor-metal photodetector. IEEE Photonics Technology Letters, 9, 223-225(1997).

    [63] 潘青, Qing Pan. 2.6 μm InGaAs photodetector. Semiconductor Optoelectronics, 20, 79-82(1999).

    [64] R W M Hoogeveen, A P H Goede. Extended wavelength InGaAs infrared (1.0-2.4 μm) detector arrays on SCIAMACHY for space-based spectrometry of the Earth atmosphere. Infrared Physics & Technology, 42, 1-16(2001).

    [65] E H Böttcher, H Pfitzenmaier, E Dröge. Millimetre-wave coplanar waveguide slow wave transmission lines on InP. Electronics Letters, 32, 1377-1378(1996).

    [66] V Hurm, W Benz, W Bronner. 20 Gbit/s long wavelength monolithic integrated photoreceiver grown on GaAs. Electronics Letters, 33, 624-626(1997).

    [67] C X Shi, D Grutzmacher, M Stollenwerk. High-performance undoped InP/n-In0.53Ga0.47As MSM photodetectors grown by LP-MOVPE. IEEE Transactions on Electron Devices, 39, 1028-1031(1992).

    [68] 史常忻, Changxin Shi, K Heime, K Heime. Long-Wavelength low dark current high speed In0.53Ga0.47As MSM photodetectors. Chinese Journal of Semiconductors, 12, 767-770(1991).

    [69] E H Böttcher, D Kuhl, F Hieronymi. Ultrafast semiinsulating InP:Fe-InGaAs:Fe-InP:Fe MSM photodetectors: modeling and performance. IEEE Journal of Quantum Electronics, 28, 2343-2357(1992).

    [70] J H Kim, H T Griem, R A Friedman. High-performance back-illuminated InGaAs/lnAlAs MSM photodetector with a record responsivity of 0.96 A/W. IEEE Photonics Technology Letters, 4, 1241-1244(1992).

    [71] R H Yuang, J I Chyi, Y J Chan. High-responsivity InGaAs MSM photodetectors with semi-transparent Schottky contacts. IEEE Photonics Technology Letters, 7, 1333-1335(1995).

    [72] R Klockenbrink, H H Wehmann, A Schlachetzki. Improved thermal stability of In0.53Ga0.47As metal-semiconductor-metal photodetectors with Al2O3 interfacial layer. Photonics Technology Letters IEEE, 6, 1213-1215(1994).

    [73] A C Davidson, F W Wise, R C Compton. High-performance MSM photodetectors using Cu Schottky contacts. IEEE Photonics Technology Letters, 9, 657-659(1997).

    [74] R H Yuang, H C Shieh, Y J Chien. High-performance large-area InGaAs MSM photodetectors with a pseudomorphic InGaP cap layer. IEEE Photonics Technology Letters, 7, 914-916(1995).

    [75] Z Pang, K C Song, P Mascher. Sulfur passivation of InP/InGaAs metal-semiconductor-metal photodetectors. Journal of The Electrochemical Society, 146, 1946-1951(1999).

    [76] W Y Chiu, F H Huang, Y S Wu. Improvement of mesa-sidewall leakage current using benzocyclobuten sidewall process in InGaAs/InP MSM photodetector. Japanese Journal of Applied Physics, 44, 2586-2587(2005).

    [77] J Kim, W B Johnson, S Kanakaraju. Improvement of dark current using InP/InGaAsP transition layer in large-area InGaAs MSM photodetectors. IEEE Transactions on Electron Devices, 51, 351-356(2004).

    [78] Hsiang T Y, Alexrou S, Wang C C, et al. Picosecond silicon metalsemiconductmetal photodiode[C]Photodetects Power Meters. International Society f Optics Photonics, 1993, 2022: 7683.

    [79] H C Lee, Zeghbroeck B Van. Novel high-speed silicon MSM photodetector operating at 830 nm wavelength. IEEE Electron Device Letters, 16, 175-177(1995).

    [80] J Y L Ho, K S Wong. Bandwidth enhancement in silicon metal-semiconductor-metal photodetector by trench formation. IEEE Photonics Technology Letters, 8, 1064-1066(1996).

    [81] C O Chui, A K Okyay, K C Saraswat. Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors. IEEE Photonics Technology Letters, 15, 1585-1587(2003).

    [82] A K Okyay, C O Chui, K C Saraswat. Leakage suppression by asymmetric area electrodes in metal-semiconductor-metal photodetectors. Applied Physics Letters, 88, 063506(2006).

    [83] L Colace, G Masini, F Galluzzi. Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si. Applied Physics Letters, 72, 3175-3177(1998).

    [84] A K Okyay, A M Nayfeh, K C Saraswat. High-efficiency metal-semiconductor-metal photodetectors on heteroepitaxially grown Ge on Si. Optics Letters, 31, 2565-2567(2006).

    [85] B Ciftcioglu, J Zhang, R Sobolewski. An 850-nm normal-incidence Germanium metal-semiconductor-metal photodetector with 13-GHz bandwidth and 8-μA dark current. IEEE Photonics Technology Letters, 22, 1850-1852(2010).

    [86] B J Li, G Z Li, E K Liu. Monolithic integration of a SiGe/Si modulator and multiple quantum well photodetector for 1.55 μm operation. Applied Physics Letters, 73, 3504-3505(1998).

    [87] J D Hwang, W T Chang, Y H Chen. Suppressing the dark current of metal-semiconductor-metal SiGe/Si heterojunction photodetector by using asymmetric structure. Thin Solid Films, 515, 3837-3839(2007).

    [88] 张诗雨, Shiyu Zhang, 洪霞, Xia Hong, 方旭, Xu Fang. Design of silicon based Germanium metal-semiconductor-metal photodetector with asymmetric area electrodes. Opto-Electronic Engineering, 42, 84-88(2015).

    [89] J H Park, H Y Yu. Dark current suppression in an erbium-Germanium-erbium photodetector with an asymmetric electrode area. Optics Letters, 36, 1182-1184(2011).

    [90] K W Ang, M B Yu, S Y Zhu. Novel NiGe MSM photodetector featuring asymmetrical schottky barriers using sulfur co-implantation and segregation. IEEE Electron Device Letters, 29, 708-710(2008).

    [91] H Zang, S J Lee, W Y Loh. Application of dopant segregation to metal-germanium-metal photodetectors and its dark current suppression mechanism. Applied Physics Letters, 92, 051110(2008).

    [92] X H Liu, D J Yu, F Cao. Low-voltage photodetectors with high responsivity based on solution-processed micrometer-scale all-inorganic perovskite nanoplatelets. Small, 13, 1700364(2017).

    [93] P Ramasamy, D H Lim, B Kim. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chemical Communications, 52, 2067-2070(2016).

    [94] A F Wang, X X Yan, M Zhang. Controlled synthesis of lead-free and stable perovskite derivative Cs2SnI6 nanocrystals via a facile hot-injection process. Chemistry of Materials, 28, 8132-8140(2016).

    [95] A Urich, K Unterrainer, T Mueller. Intrinsic response time of graphene photodetectors. Nano Letters, 11, 2804-2808(2011).

    [96] Y Xu, A Ali, K Shehzad. Solvent-based soft-patterning of graphene lateral heterostructures for broadband high-speed metal-semiconductor-metal photodetectors. Advanced Materials Technologies, 2, 1600241(2017).

    [97] D S Tsai, K K Liu, D H Lien. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano, 7, 3905-3911(2013).

    [98] S Khadka, T E Wickramasinghe, M Lindquist. As-grown two-dimensional MoS2 based photodetectors with naturally formed contacts. Applied Physics Letters, 110, 261109(2017).

    [99] M Ahmadi, T Wu, B Hu. A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics. Advanced Materials, 29(41), 1605242(2017).

    [100] W Tian, H P Zhou, L Li. Hybrid organic-inorganic perovskite photodetectors. Small, 13(41), 1702107(2017).

    [101] K S Novoselov, A K Geim, S V Morozov. Electric field effect in atomically thin carbon films. Science, 306, 666-669(2004).

    [102] S C Song, Q Chen, L Jin. Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber. Nanoscale, 5, 9615-9619(2013).

    [103] J Y Ge, M L Luo, W H Zou. Plasmonic photodetectors based on asymmetric nanogap electrodes. Applied Physics Express, 9, 084101(2016).

    [104] M Heiblum, S H Wang, J Whinnery. Characteristics of integrated MOM junctions at dc and at optical frequencies. IEEE Journal of Quantum Electronics, 14, 159-169(1978).

    [105] Y X Cui, K H Fung, J Xu. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano letters, 12, 1443-1447(2012).

    [106] Y X Cui, Y R He, Y Jin. Plasmonic and metamaterial structures as electromagnetic absorbers. Laser & Photonics Reviews, 8, 495-520(2014).

    [107] A Sobhani, M W Knight, Y M Wang. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nature Communications, 4, 1643(2013).

    [108] L Wen, Y F Chen, L Liang. Hot electron harvesting via photoelectric ejection and photothermal heat relaxation in hotspots-enriched plasmonic/photonic disordered nano-composites. ACS Photonics, 5, 581-591(2018).

    [109] W Li, J Valentine. Metamaterial perfect absorber based hot electron photodetection. Nano Letters, 14, 3510-3514(2014).

    [110] K T Lin, H L Chen, Y S Lai. Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths. Nature Communications, 5, 3288(2014).

    [111] Y H Lu, W Dong, Z Chen. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation. Scientific Reports, 6, 30650(2016).

    [112] W Y Wang, A Klots, D Prasai. Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Letters, 15, 7440-7444(2015).

    [113] F P G D Arquer, A Mihi, G Konstantatos. Large-area plasmonic-crystal hot-electron based photodetectors. ACS Photonics, 2, 950-957(2015).

    [114] W Li, Z J Coppens, L V Besteiro. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nature Communications, 6, 8379(2015).

    [115] J B Chou, X H Li, Y Wang. Surface plasmon assisted hot electron collection in wafer-scale metallic-semiconductor photonic crystals. Optics Express, 24, A1234-A1244(2016).

    [116] A Sobhani, A Lauchner, S Najmaei. Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells. Applied Physics Letters, 104, 031112(2014).

    [117] L Wen, Y F Chen, W W Liu. Enhanced photoelectric and photothermal responses on silicon platform by plasmonic absorber and omni-schottky Junction. Laser & Photonics Reviews, 11, 1700059(2017).

    [118] M W Sun, Z Xu, M Yin. Broad-band three dimensional nanocave ZnO thin film photodetectors enhanced by Au surface plasmon resonance. Nanoscale, 8, 8924-8930(2016).

    [119] C Zhang, K Wu, V Giannini. Planar hot-electron photodetection with tamm plasmons. ACS Nano, 11, 1719-1727(2017).

    [120] Y Y Lin, Y X Cui, F Ding. Tungsten based anisotropic metamaterial as an ultra-broadband absorber. Optical Materials Express, 7, 606-617(2017).

    [121] M Sakhdari, M Hajizadegan, M Farhat. Efficient, broadband and wide-angle hot-electron transduction using metal-semiconductor hyperbolic metamaterials. Nano Energy, 26, 371-381(2016).

    CLP Journals

    [1] Sitong Guo, Kaifang Qiu, Wenyan Wang, Guohui Li, Aiping Zhai, Deng Pan, Ting Ji, Yanxia Cui. Enhancing broadband response of hot-electron photodetectors by Au/TiO2 composite nanostructure[J]. Infrared and Laser Engineering, 2023, 52(3): 20220464

    Linhua Gao, Yanxia Cui, Qiangbing Liang, Yanzhen Liu, Guohui Li, Mingming Fan, Yuying Hao. Research progress in metal-inorganic semiconductor-metal photodetectors[J]. Infrared and Laser Engineering, 2020, 49(8): 20201025
    Download Citation