• Photonics Research
  • Vol. 10, Issue 1, 126 (2022)
Jianying Jing1、2、3, Kun Liu1、2、3、*, Junfeng Jiang1、2、3, Tianhua Xu1、2、3, Shuang Wang1、2、3, Jinying Ma1、2、3, Zhao Zhang1、2、3, Wenlin Zhang1、2、3, and Tiegen Liu1、2、3
Author Affiliations
  • 1School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
  • 3Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.1364/PRJ.439861 Cite this Article Set citation alerts
    Jianying Jing, Kun Liu, Junfeng Jiang, Tianhua Xu, Shuang Wang, Jinying Ma, Zhao Zhang, Wenlin Zhang, Tiegen Liu. Performance improvement approaches for optical fiber SPR sensors and their sensing applications[J]. Photonics Research, 2022, 10(1): 126 Copy Citation Text show less
    References

    [1] A. Jebelli, F. Oroojalian, F. Fathi, A. Mokhtarzadeh, M. de la Guardia. Recent advances in surface plasmon resonance biosensors for microRNAs detection. Biosens. Bioelectron., 169, 112599(2020).

    [2] A. Koponen, E. Kerkela, T. Rojalin, E. Lazaro-Ibanez, T. Suutari, H. O. Saari, P. Siljander, M. Yliperttula, S. Laitinen, T. Viitala. Label-free characterization and real-time monitoring of cell uptake of extracellular vesicles. Biosens. Bioelectron., 168, 112510(2020).

    [3] G. Y. Wang, Y. Lu, L. C. Duan, J. Q. Yao. A refractive index sensor based on PCF with ultra-wide detection range. IEEE J. Sel. Top. Quantum Electron., 27, 5600108(2021).

    [4] H. X. Yu, Y. Chong, P. H. Zhang, J. M. Ma, D. C. Li. A D-shaped fiber SPR sensor with a composite nanostructure of MoS2-graphene for glucose detection. Talanta, 219, 121324(2020).

    [5] W. J. Hu, Y. Y. Huang, C. Y. Chen, Y. K. Liu, T. A. Guo, B. O. Guan. Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification. Sens. Actuators B, 264, 440-447(2018).

    [6] P. Berini. Long-range surface plasmon polaritons. Adv. Opt. Photon., 1, 484-588(2009).

    [7] J. Homola. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev., 108, 462-493(2008).

    [8] J. Y. Jing, Q. Wang, W. M. Zhao, B. T. Wang. Long-range surface plasmon resonance and its sensing applications: a review. Opt. Laser Eng., 112, 103-118(2019).

    [9] C. T. Yang, L. Wu, P. Bai, B. Thierry. Investigation of plasmonic signal enhancement based on long range surface plasmon resonance with gold nanoparticle tags. J. Mater. Chem. C, 4, 9897-9904(2016).

    [10] J. Y. Ma, K. Liu, J. F. Jiang, T. H. Xu, S. Wang, P. X. Chang, Z. Zhang, J. H. Zhang, T. G. Liu. All optic-fiber coupled plasmon waveguide resonance sensor using ZrS2 based dielectric layer. Opt. Express, 28, 11280-11289(2020).

    [11] A. Shalabney, I. Abdulhalim. Sensitivity-enhancement methods for surface plasmon sensors. Laser Photon. Rev., 5, 571-606(2011).

    [12] H. T. Zhang, Y. J. Geng, S. P. Xu, W. Q. Xu, Y. Tian, J. Yu, W. Y. Deng, B. Yu, Y. Liu. Surface plasmon field-enhanced Raman scattering based on evanescent field excitation of waveguide-coupled surface plasmon resonance configuration. J. Phys. Chem. C, 124, 1640-1645(2020).

    [13] J. Y. Jing, Q. Zhu, Z. X. Dai, S. Y. Li, Q. Wang, W. M. Zhao. Sensing self-referenced fiber optic long range surface plasmon resonance sensor based on electronic coupling between surface plasmon polaritons. Appl. Opt., 58, 6329-6334(2019).

    [14] Y. Zhao, R. J. Tong, F. Xia, Y. Peng. Current status of optical fiber biosensor based on surface plasmon resonance. Biosens. Bioelectron., 142, 111505(2019).

    [15] Y. Liu, W. Peng. Fiber-optic surface plasmon resonance sensors and biochemical applications: a review. J. Lightwave Technol., 39, 3781-3791(2021).

    [16] C. Caucheteur, T. Guo, J. Albert. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal. Bioanal. Chem., 407, 3883-3897(2015).

    [17] B. D. Gupta, R. Kant. Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures. Opt. Laser Technol., 101, 144-161(2018).

    [18] Q. L. Duan, Y. N. Liu, S. S. Chang, H. Y. Chen, J. H. Chen. Surface plasmonic sensors: sensing mechanism and recent applications. Sensors, 21, 5262(2021).

    [19] A. K. Sharma, A. K. Pandey, B. Kaur. A review of advancements (2007–2017) in plasmonics-based optical fiber sensors. Opt. Fiber Technol., 43, 20-34(2018).

    [20] M. Chauhan, V. K. Singh. Review on recent experimental SPR/LSPR based fiber optic analyte sensors. Opt. Fiber Technol., 64, 102580(2021).

    [21] X. D. Wang, O. S. Wolfbeis. Fiber-optic chemical sensors and biosensors (2015–2019). Anal. Chem., 92, 397-430(2020).

    [22] M. S. Soares, M. Vidal, N. F. Santos, F. M. Costa, C. Marques, S. O. Pereira, C. Leitao. Immunosensing based on optical fiber technology: recent advances. Biosensors, 11, 305(2021).

    [23] J. S. Seok, H. Ju. Plasmonic optical biosensors for detecting C-reactive protein: a review. Micromachines, 11, 895(2020).

    [24] M. A. Butt, S. N. Khonina, N. L. Kazanskiy. Plasmonics: a necessity in the field of sensing: a review. Fiber Integr. Opt., 40, 14-47(2021).

    [25] S. Lee, H. Song, H. Ahn, S. Kim, J. R. Choi, K. Kim. Fiber-optic localized surface plasmon resonance sensors based on nanomaterials. Sensors, 21, 819(2021).

    [26] A. Guerreiro, D. F. Santos, J. M. Baptista. New trends in the simulation of nanosplasmonic optical D-type fiber sensors. Sensors, 19, 1772(2019).

    [27] M. Qi, N. M. Y. Zhang, K. W. Li, S. C. Tjin, L. Wei. Hybrid plasmonic fiber-optic sensors. Sensors, 20, 3266(2020).

    [28] M. E. Martinez-Hernandez, P. J. Rivero, J. Goicoechea, F. J. Arregui. Trends in the implementation of advanced plasmonic materials in optical fiber sensors (2010–2020). Chemosensors, 9, 64(2021).

    [29] B. D. Gupta, A. M. Shrivastav, S. P. Usha. Surface plasmon resonance-based fiber optic sensors utilizing molecular imprinting. Sensors, 16, 1381(2016).

    [30] T. Yang, X. L. He, X. Zhou, Z. Y. Lei, Y. L. Wang, J. Yang, D. Cai, S. L. Chen, X. D. Wang. Surface plasmon cavities on optical fiber end-facets for biomolecule and ultrasound detection. Opt. Laser Technol., 101, 468-478(2018).

    [31] B. Dastmalchi, P. Tassin, T. Koschny, C. M. Soukoulis. A new perspective on plasmonics: confinement and propagation length of surface plasmons for different materials and geometries. Adv. Opt. Mater., 4, 177-184(2016).

    [32] S. Shi, L. B. Wang, R. X. Su, B. S. Liu, R. L. Huang, W. Qi, Z. M. He. A polydopamine-modified optical fiber SPR biosensor using electroless-plated gold films for immunoassays. Biosens. Bioelectron., 74, 454-460(2015).

    [33] J. Y. Jing, Q. Wang, B. T. Wang. Refractive index sensing characteristics of carbon nanotube-deposited photonic crystal fiber SPR sensor. Opt. Fiber Technol., 43, 137-144(2018).

    [34] X. Zhao, X. Zhang, X. S. Zhu, Y. W. Shi. Long-range surface plasmon resonance sensor based on the GK570/Ag coated hollow fiber with an asymmetric layer structure. Opt. Express, 27, 9550-9560(2019).

    [35] X. Zhang, X. S. Zhu, Y. W. Shi. Fiber optic surface plasmon resonance sensor based on a silver-coated large-core suspended-core fiber. Opt. Lett., 44, 4550-4553(2019).

    [36] F. Esposito, L. Sansone, A. Srivastava, F. Baldini, S. Campopiano, F. Chiavaioli, M. Giordano, A. Giannetti, A. Iadicicco. Long period grating in double cladding fiber coated with graphene oxide as high-performance optical platform for biosensing. Biosens. Bioelectron., 172, 112747(2021).

    [37] P. Urbancova, M. Goraus, D. Pudis, P. Hlubina, A. Kuzma, D. Jandura, J. Durisova, P. Micek. 2D polymer/metal structures for surface plasmon resonance. Appl. Surf. Sci., 530, 147279(2020).

    [38] A. Pathak, B. D. Gupta. Palladium nanoparticles embedded PPy shell coated CNTs towards a high performance hydrazine detection through optical fiber plasmonic sensor. Sens. Actuators B, 326, 128717(2021).

    [39] S. T. Wang, N. Liu, Q. Cheng, B. Pang, J. T. Lv. Surface plasmon resonance on the antimonene-Fe2O3-copper layer for optical attenuated total reflection spectroscopic application. Plasmonics, 16, 559-566(2020).

    [40] C. W. Cheng, S. S. Raja, C. W. Chang, X. Q. Zhang, P. Y. Liu, Y. H. Lee, C. K. Shih, S. Gwo. Epitaxial aluminum plasmonics covering full visible spectrum. Nanophotonics, 10, 627-637(2021).

    [41] M. Kanso, S. Cuenot, G. Louarn. Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments. Plasmonics, 3, 49-57(2008).

    [42] P. K. Maharana, R. Jha, S. Palei. Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared. Sens. Actuators B, 190, 494-501(2014).

    [43] F. C. Chien, S. J. Chen. A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes. Biosens. Bioelectron., 20, 633-642(2004).

    [44] Y. S. Dwivedi, A. K. Sharma, B. D. Gupta. Influence of design parameters on the performance of a surface plasmon sensor based fiber optic sensor. Plasmonics, 3, 79-86(2008).

    [45] M. M. Rahman, M. M. Rana, M. S. Rahman, M. S. Anower, M. A. Mollah, A. K. Paul. Sensitivity enhancement of SPR biosensors employing heterostructure of PtSe2 and 2D materials. Opt. Mater., 107, 110123(2020).

    [46] H. Agrawal, A. M. Shrivastav, B. D. Gupta. Surface plasmon resonance based optical fiber sensor for atrazine detection using molecular imprinting technique. Sens. Actuators B, 227, 204-211(2016).

    [47] F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, F. Baldini. Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors. Biosensors, 7, 23(2017).

    [48] H. P. Loock, P. D. Wentzell. Detection limits of chemical sensors: applications and misapplications. Sens. Actuators B, 173, 157-163(2012).

    [49] R. Ravikumar, L. H. Chen, P. Jayaraman, C. L. Poh, C. C. Chan. Chitosan-nickel film based interferometric optical fiber sensor for label-free detection of histidine tagged proteins. Biosens. Bioelectron., 99, 578-585(2018).

    [50] C. Liu, Q. Cai, B. J. Xu, W. D. Zhu, L. Zhang, J. L. Zhao, X. F. Chen. Graphene oxide functionalized long period grating for ultrasensitive label-free immunosensing. Biosens. Bioelectron., 94, 200-206(2017).

    [51] Z. Cheng, Q. Wang, A. S. Zhu, F. M. Qiu, L. Y. Niu, J. Y. Jing. Au-nanoshells modified surface field enhanced LRSPR biosensor with low LOD for highly sensitive hIgG sensing. Opt. Laser Technol., 134, 106656(2021).

    [52] Y. Peng, Y. Zhao, X. G. Hu, Y. Yang. Optical fiber quantum biosensor based on surface plasmon polaritons for the label-free measurement of protein. Sens. Actuators B, 316, 128097(2020).

    [53] J. J. Luo, G. S. Liu, W. J. Zhou, S. Q. Hu, L. Chen, Y. F. Chen, Y. H. Luo, Z. Chen. A graphene-PDMS hybrid overcoating enhanced fiber plasmonic temperature sensor with high sensitivity and fast response. J. Mater. Chem. C, 8, 12893-12901(2020).

    [54] B. S. Boruah, R. Biswas. In-situ sensing of hazardous heavy metal ions through an ecofriendly scheme. Opt. Laser Technol., 137, 106813(2021).

    [55] N. Cennamo, G. D’Agostino, M. Pesavento, L. Zeni. High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of L-nicotine. Sens. Actuators B, 191, 529-536(2014).

    [56] P. H. Zhang, B. Y. Lu, Y. W. Sun, H. X. Yu, K. X. Xu, D. C. Li. Side-polished flexible SPR sensor modified by graphene with in situ temperature self-compensation. Biomed. Opt. Express, 10, 215-225(2019).

    [57] Q. Wang, H. Song, A. S. Zhu, F. M. Qiu. A label-free and anti-interference dual-channel SPR fiber optic sensor with self-compensation for biomarker detection. IEEE Trans. Instrum. Meas., 70, 7002007(2021).

    [58] W. H. Tsai, Y. C. Lin, J. K. Tai, Y. C. Tsao. Multi-step structure of side-polished fiber sensor to enhance SPR effect. Opt. Laser Technol., 42, 453-456(2010).

    [59] B. Y. Li, Z. C. Sheng, M. Wu, X. Y. Liu, G. Y. Zhou, J. T. Liu, Z. Y. Hou, C. M. Xia. Sensitive real-time monitoring of refractive indices and components using a microstructure optical fiber microfluidic sensor. Opt. Lett., 43, 5070-5073(2018).

    [60] I. Dominguez, I. Del Villar, O. Fuentes, J. M. Corres, I. R. Matias. Interdigital concept in photonic sensors based on an array of lossy mode resonances. Sci. Rep., 11, 13228(2021).

    [61] G. L. Xiao, Z. T. Ou, H. Y. Yang, Y. P. Xu, J. Y. Chen, H. O. Li, Q. Li, L. Z. Zeng, Y. R. Den, J. Q. Li. An integrated detection based on a multi-parameter plasmonic optical fiber sensor. Sensors, 21, 803(2021).

    [62] H. Liu, H. W. Li, Q. Wang, M. Wang, Y. Ding, C. H. Zhu. Simultaneous measurement of temperature and magnetic field based on surface plasmon resonance and Sagnac interference in a D-shaped photonic crystal fiber. Opt. Quant. Electron., 50, 392(2018).

    [63] X. C. Yang, Y. Lu, B. L. Liu, J. Q. Yao. Simultaneous measurement of refractive index and temperature based on SPR in D-shaped MOF. Appl. Opt., 56, 4369-4374(2017).

    [64] B. Li, F. Zhang, X. Yan, X. N. Zhang, F. Wang, S. G. Li, T. L. Cheng. Numerical analysis of dual-parameter optical fiber sensor with large measurement range based on surface plasmon resonance. IEEE Sens. J., 21, 10719-10725(2021).

    [65] T. Ayupova, M. Shaimerdenova, S. Korganbayev, M. Sypabekova, A. Bekmurzayeva, W. Blanc, S. Sales, T. Guo, C. Molardi, D. Tosi. Fiber optic refractive index distributed multi-sensors by scattering-level multiplexing with MgO nanoparticle-doped fibers. IEEE Sens. J., 20, 2504-2510(2020).

    [66] M. D. Alonso-Murias, J. S. Velazquez-Gonzalez, D. Monzon-Hernandez. SPR fiber tip sensor for the simultaneous measurement of refractive index, temperature, and level of a liquid. J. Lightwave Technol., 37, 4808-4814(2019).

    [67] Q. Wang, J. Y. Jing, X. Z. Wang, L. Y. Niu, W. M. Zhao. A D-shaped fiber long-range surface plasmon resonance sensor with high Q-factor and temperature self-compensation. IEEE Trans. Instrum. Meas., 69, 2218-2224(2020).

    [68] H. I. Muri, A. Bano, D. R. Hjelme. LSPR and interferometric sensor modalities combined using a double-clad optical fiber. Sensors, 18, 187(2018).

    [69] T. S. Li, L. Q. Zhu, X. C. Yang, X. P. Lou, L. D. Yu. A refractive index sensor based on H-shaped photonic crystal fibers coated with Ag-graphene layers. Sensors, 20, 741(2020).

    [70] Z. J. Zhang, Y. Y. Chen, H. J. Liu, H. D. Bae, D. A. Olson, A. K. Gupta, M. Yu. On-fiber plasmonic interferometer for multi-parameter sensing. Opt. Express, 23, 10732-10740(2015).

    [71] Y. Liu, Q. Xia, A. Zhou, X. B. Wang, L. B. Yuan. Multi-parameter sensing based on surface plasma resonance with tungsten disulfide sheets coated. Opt. Express, 28, 6084-6094(2020).

    [72] S. J. Weng, L. Pei, C. Liu, J. S. Wang, J. Li, T. G. Ning. Double-side polished fiber SPR sensor for simultaneous temperature and refractive index measurement. IEEE Photon. Technol. Lett., 28, 1916-1919(2016).

    [73] Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, M. Hide. Development of an optical fiber SPR sensor for living cell activation. Biosens. Bioelectron., 25, 1244-1247(2010).

    [74] J. Cao, M. H. Tu, T. Sun, K. T. V. Grattan. Wavelength-based localized surface plasmon resonance optical fiber biosensor. Sens. Actuators B, 181, 611-619(2013).

    [75] Q. Wang, X. Z. Wang, H. Song, W. M. Zhao, J. Y. Jing. A dual channel self-compensation optical fiber biosensor based on coupling of surface plasmon polariton. Opt. Laser Technol., 124, 106002(2020).

    [76] S. Isaacs, I. Abdulhalim. Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach. Appl. Phys. Lett., 106, 193701(2015).

    [77] M. Vala, S. Etheridge, J. A. Roach, J. Homola. Long-range surface plasmons for sensitive detection of bacterial analytes. Sens. Actuators B, 139, 59-63(2009).

    [78] H. Zhang, Y. F. Chen, X. J. Feng, X. Xiong, S. Q. Hu, Z. P. Jiang, J. L. Dong, W. G. Zhu, W. T. Qiu, H. Y. Guan, H. H. Lu, J. H. Yu, Y. C. Zhong, J. Zhang, M. He, Y. H. Luo, Z. Chen. Long-range surface plasmon resonance sensor based on side-polished fiber for biosensing applications. IEEE J. Sel. Top. Quantum Electron., 25, 7101909(2019).

    [79] S. Jain, A. Paliwal, V. Gupta, M. Tomar. Refractive index tuning of SiO2 for long range surface plasmon resonance based biosensor. Biosens. Bioelectron., 168, 112508(2020).

    [80] K. Liu, M. Xue, J. F. Jiang, T. Wang, P. X. Chang, T. G. Liu. Theoretical modeling of a coupled plasmon waveguide resonance sensor based on multimode optical fiber. Opt. Commun., 410, 552-558(2018).

    [81] J. Y. Ma, K. Liu, J. F. Jiang, T. H. Xu, S. Wang, P. X. Chang, Z. Zhang, J. H. Zhang, T. G. Liu. Theoretical and experimental investigation of an all-fiber waveguide coupled surface plasmon resonance sensor with Au-ZnO-Au sandwich structure. IEEE Access, 7, 169961(2019).

    [82] K. Zhang, C. G. Du, J. C. Gao. Long-range surface plasmon polariton enhancement in double-electrode structure. Acta Phys. Sinica, 66, 227302(2017).

    [83] A. K. Mishra, S. K. Mishra, R. K. Verma. Doped single-wall carbon nanotubes in propagating surface plasmon resonance-based fiber optic refractive index sensing. Plasmonics, 12, 1657-1663(2017).

    [84] C. Y. Lin, S. J. Chen. Design of highly sensitive guided-wave surface plasmon resonance biosensor with deep dip using genetic algorithm. Opt. Commun., 445, 155-160(2019).

    [85] V. P. Prakashan, G. George, M. S. Sanu, M. S. Sajna, A. C. Saritha, C. Sudarsanakumar, P. R. Biju, C. Joseph, N. V. Unnikrishnan. Investigations on SPR induced Cu@Ag core shell doped SiO2-TiO2-ZrO2 fiber optic sensor for mercury detection. Appl. Surf. Sci., 507, 144957(2020).

    [86] K. X. Dong, Y. P. Ji, J. J. Mi, X. T. Zhao, B. Wu, W. X. Huang, J. P. Shi. High sensitivity SPR sensor for liquid phase sample with Ag/PbS/graphene hybrid nanostructure. Opto-Electron. Eng., 44, 198-201(2017).

    [87] X. Y. Xuan, S. P. Xu, Y. Liu, H. B. Li, W. Q. Xu, J. R. Lombardi. A long-range surface plasmon resonance/probe/silver nanoparticle (LRSPR-P-NP) nanoantenna configuration for surface-enhanced Raman scattering. J. Phys. Chem. Lett., 3, 2773-2778(2012).

    [88] C. T. Yang, R. Mejard, H. J. Griesser, P. O. Bagnaninchi, B. Thierry. Cellular micromotion monitored by long-range surface plasmon resonance with optical fluctuation analysis. Anal. Chem., 87, 1456-1461(2015).

    [89] A. W. Wark, H. J. Lee, R. M. Corn. Long-range surface plasmon resonance imaging for bioaffinity sensors. Anal. Chem., 77, 3904-3907(2005).

    [90] Y. Y. Huang, M. F. Ding, T. Guo, D. J. Hu, Y. Y. Cao, L. Jin, B. O. Guan. A fiber-optic sensor for neurotransmitters with ultralow concentration: near-infrared plasmonic electromagnetic field enhancement using raspberry-like meso-SiO2 nanospheres. Nanoscale, 9, 14929-14936(2017).

    [91] H. Zhang, Y. Sun, S. Gao, H. Q. Zhang, J. Zhang, Y. Bai, D. Q. Song. Studies of gold nanorod-iron oxide nanohybrids for immunoassay based on SPR biosensor. Talanta, 125, 29-35(2014).

    [92] S. Shi, L. B. Wang, A. K. Wang, R. L. Huang, L. Ding, R. X. Su, W. Qi, Z. M. He. Bioinspired fabrication of optical fiber SPR sensors for immunoassays using polydopamine accelerated electroless plating. J. Mater. Chem. C, 4, 7554-7562(2016).

    [93] Q. Wu, Y. Sun, D. Zhang, S. Li, Y. Zhang, P. Y. Ma, Y. Yu, X. H. Wang, D. Q. Song. Ultrasensitive magnetic field-assisted surface plasmon resonance immunoassay for human cardiac troponin I. Biosens. Bioelectron., 96, 288-293(2017).

    [94] S. Li, Q. Wu, P. Y. Ma, Y. Zhang, D. Q. Song, X. H. Wang, Y. Sun. A sensitive SPR biosensor based on hollow gold nanospheres and improved sandwich assay with PDA-Ag@Fe3O4/rGO. Talanta, 180, 156-161(2018).

    [95] C. Fenzl, T. Hirsch, A. J. Baeumner. Liposomes with high refractive index encapsulants as tunable signal amplification tools in surface plasmon resonance spectroscopy. Anal. Chem., 87, 11157-11163(2015).

    [96] H. Komatsu, M. Miyachi, E. Fujii, D. Citterio, K. Yamada, Y. Sato, K. Kurihara, H. Kawaguchi, K. Suzuki. SPR sensor signal amplification based on dye-doped polymer particles. Sci. Technol. Adv. Mater., 7, 150-155(2006).

    [97] X. H. Zhu, Y. Y. Zhang, M. L. Liu, Y. Liu. 2D titanium carbide MXenes as emerging optical biosensing platforms. Biosens. Bioelectron., 171, 112730(2021).

    [98] L. Y. Niu, Q. Wang, J. Y. Jing, W. M. Zhao. Sensitivity enhanced D-type large-core fiber SPR sensor based on Gold nanoparticle/Au film co-modification. Opt. Commun., 450, 287-295(2019).

    [99] H. Z. Yuan, W. Ji, S. W. Chu, S. Y. Qian, F. Wang, J. F. Masson, X. Y. Han, W. Peng. Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles. Biosens. Bioelectron., 117, 637-643(2018).

    [100] K. Liu, J. H. Zhang, J. F. Jiang, T. H. Xu, S. Wang, P. X. Chang, Z. Zhang, J. Y. Ma, T. G. Liu. Multi-layer optical fiber surface plasmon resonance biosensor based on a sandwich structure of polydopamine-MoSe2@Au nanoparticles-polydopamine. Biomed. Opt. Express, 11, 6840-6851(2020).

    [101] A. M. Shrivastav, S. P. Usha, B. D. Gupta. Highly sensitive and selective erythromycin nanosensor employing fiber optic SPR/ERY imprinted nanostructure: application in milk and honey. Biosens. Bioelectron., 90, 516-524(2017).

    [102] H. Song, H. X. Zhang, Z. Sun, Z. Y. Ren, X. Y. Yang, Q. Wang. Triangular silver nanoparticle U-bent fiber sensor based on localized surface plasmon resonance. AIP Adv., 9, 085307(2019).

    [103] M. Sun, Y. X. Wang, Z. N. Chen, Y. D. Gong, J. L. Lim, X. M. Qing. Nanostars on a fiber facet with near field enhancement for surface-enhanced Raman scattering detection. Appl. Phys. A, 115, 87-91(2014).

    [104] F. Xia, H. Song, Y. Zhao, W. M. Zhao, Q. Wang, X. Z. Wang, B. T. Wang, Z. X. Dai. Ultra-high sensitivity SPR fiber sensor based on multilayer nanoparticle and Au film coupling enhancement. Measurement, 164, 108083(2020).

    [105] D. J. Feng, G. X. Liu, Q. Li, J. Cui, J. Zheng, Z. C. Ye. Design of infrared SPR sensor based on bimetallic nanowire gratings on plastic optical fiber surface. IEEE Sens. J., 15, 255-259(2015).

    [106] R. Kant, R. Tabassum, B. D. Gupta. Xanthine oxidase functionalized Ta2O5 nanostructures as a novel scaffold for highly sensitive SPR based fiber optic xanthine sensor. Biosens. Bioelectron., 99, 637-645(2018).

    [107] S. Parveen, A. Pathak, B. D. Gupta. Fiber optic SPR nanosensor based on synergistic effects of CNT/Cu-nanoparticles composite for ultratrace sensing of nitrate. Sens. Actuators B, 246, 910-919(2017).

    [108] X. Jiang, Q. Wang. Refractive index sensitivity enhancement of optical fiber SPR sensor utilizing layer of MWCNT/PtNPs composite. Opt. Fiber Technol., 51, 118-124(2019).

    [109] A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats. Plasmonic nanorod metamaterials for biosensing. Nat. Mater., 8, 867-871(2009).

    [110] Y. N. Zhang, B. R. Tao, Q. L. Wu, B. Han. Reflective SPR sensor for simultaneous measurement of nitrate concentration and temperature. IEEE Trans. Instrum. Meas., 68, 4566-4573(2019).

    [111] A. Pathak, S. Parveen, B. D. Gupta. Fibre optic SPR sensor using functionalized CNTs for the detection of SMX: comparison with enzymatic approach. Plasmonics, 13, 189-202(2018).

    [112] A. Pathak, B. D. Gupta. Ultra-selective fiber optic SPR platform for the sensing of dopamine in synthetic cerebrospinal fluid incorporating permselective nafion membrane and surface imprinted MWCNTs-PPy matrix. Biosens. Bioelectron., 133, 205-214(2019).

    [113] S. K. Mishra, S. N. Tripathi, V. Choudhary, B. D. Gupta. Surface plasmon resonance-based fiber optic methane gas sensor utilizing graphene-carbon nanotubes-poly(methyl methacrylate) hybrid nanocomposite. Plasmonics, 10, 1147-1157(2015).

    [114] R. Tabassum, B. D. Gupta. Simultaneous tuning of electric field intensity and structural properties of ZnO: graphene nanostructures for FOSPR based nicotine sensor. Biosens. Bioelectron., 91, 762-769(2017).

    [115] B. T. Wang, Y. X. Niu, S. W. Zheng, Y. H. Yin, M. Ding. An optical fiber immunosensor with a low detection limit based on plasmon coupling enhancement. J. Lightwave Technol., 38, 3781-3788(2020).

    [116] W. Yang, J. Yu, X. T. Xi, Y. Sun, Y. M. Shen, W. W. Yue, C. Zhang, S. Z. Jiang. Preparation of graphene/ITO nanorod metamaterial/U-bent-annealing fiber sensor and DNA biomolecule detection. Nanomaterials, 9, 1154(2019).

    [117] A. K. Pathak, V. K. Singh. SPR based optical fiber refractive index sensor using silver nanowire assisted CSMFC. IEEE Photon. Technol. Lett., 32, 465-468(2020).

    [118] Y. Guo, J. S. Li, S. G. Li, Y. D. Liu, S. H. Zhang, J. Wang, S. Wang, W. X. Zhang, T. L. Cheng, R. Hao. Dual-polarized optical sensing of microstructure fiber with pentagonal-lattice based on surface plasmon resonance in the near-IR spectrum. Optik, 202, 163671(2020).

    [119] Q. Wu, N. B. Li, Y. Wang, Y. C. Xu, J. D. Wu, G. R. Jia, F. J. Ji, X. D. Fang, F. F. Chen, X. Q. Cui. Ultrasensitive and selective determination of carcinoembryonic antigen using multifunctional ultrathin amino-functionalized Ti3C2-MXene nanosheets. Anal. Chem., 92, 3354-3360(2020).

    [120] L. X. Kang, C. M. Das, D. Liu, M. W. Chen, P. Coquet, G. Hong, K. T. Yong. A comparative performance evaluation of 2D nanomaterials for applications in plasmonic biosensing. Phys. Status Solidi A, 217, 2000255(2020).

    [121] N. Li, J. J. Guo, Y. W. Ding, Y. Q. Hu, C. H. Zhao, C. J. Zhao. Direct regulation of double cation defects at the A1A2 site for a high-performance oxygen evolution reaction perovskite catalyst. ACS Appl. Mater. Interfaces, 13, 332-340(2021).

    [122] D. T. Nurrohman, Y. H. Wang, N. F. Chiu. Exploring graphene and MoS2 chips based surface plasmon resonance biosensors for diagnostic applications. Front. Chem., 8, 728(2020).

    [123] R. Kumar, S. Pal, A. Verma, Y. K. Prajapati, J. P. Saini. Effect of silicon on sensitivity of SPR biosensor using hybrid nanostructure of black phosphorus and MXene. Superlattices Microstruct., 145, 106591(2020).

    [124] Y. F. Yuan, X. T. Yu, Q. L. Ouyang, Y. H. Shao, J. Song, J. L. Qu, K. T. Yong. Highly anisotropic black phosphorous-graphene hybrid architecture for ultrassensitive plasmonic biosensing: theoretical insight. 2D Mater., 5, 025015(2018).

    [125] H. Song, Q. Wang, W. M. Zhao. A novel SPR sensor sensitivity-enhancing method for immunoassay by inserting MoS2 nanosheets between metal film and fiber. Opt. Laser Eng., 132, 106135(2020).

    [126] S. Pal, A. Verma, Y. K. Prajapati, J. P. Saini. Sensitive detection using heterostructure of black phosphorus, transition metal di-chalcogenides and MXene in SPR sensor. Appl. Phys. A, 126, 809(2020).

    [127] M. S. Rahman, M. S. Anower, L. F. Abdulrazak. Utilization of a phosphorene-graphene/TMDC heterostructure in a surface plasmon resonance-based fiber optic biosensor. Photon. Nanostr. Fundam. Appl., 35, 100711(2019).

    [128] Y. Z. Chen, Y. Q. Ge, W. C. Huang, Z. J. Li, L. M. Wu, H. Zhang, X. J. Li. Refractive index sensors based on Ti3C2Tx MXene fibers. ACS Appl. Nano Mater., 3, 303-311(2020).

    [129] Z. C. Xia, F. H. Chu, Z. L. Bian, Z. Zhang, J. L. Li, Z. Guo. Study of surface plasmon resonance sensor based on polymer-tipped optical fiber with barium titanate layer. J. Lightwave Technol., 38, 912-918(2020).

    [130] Y. Vasimalla, H. S. Pradhan, R. J. Pandya. SPR performance enhancement for DNA hybridization employing black phosphorus, silver, and silicon. Appl. Opt., 59, 7299-7307(2020).

    [131] Q. Wu, N. B. Li, Y. Wang, Y. Liu, Y. C. Xu, S. T. Wei, J. D. Wu, G. R. Jia, X. D. Fang, F. F. Chen, X. Q. Cui. A 2D transition metal carbide MXene-based SPR biosensor for ultrasensitive carcinoembryonic antigen detection. Biosens. Bioelectron., 144, 111697(2019).

    [132] N. Mudgal, P. Yupapin, J. Ali, G. Singh. BaTiO3-graphene-affinity layer-based surface plasmon resonance (SPR) biosensor for pseudomonas bacterial detection. Plasmonics, 15, 1221-1229(2020).

    [133] A. Srivastava, R. Das, Y. K. Prajapati. Effect of perovskite material on performance of surface plasmon resonance biosensor. IET Optoelectron., 14, 256-265(2020).

    [134] M. Alagdar, B. Yousif, N. F. Areed, M. Elzalabani. Highly sensitive fiber optic surface plasmon resonance sensor employing 2D nanomaterials. Appl. Phys. A, 126, 522(2020).

    [135] , M. K. Yadav, P. Kumar, R. K. Verma. Detection of adulteration in pure honey utilizing Ag-graphene oxide coated fiber optic SPR probes. Food Chem., 332, 127346(2020).

    [136] Q. Wang, X. Jiang, L. Y. Niu, X. C. Fan. Enhanced sensitivity of bimetallic optical fiber SPR sensor based on MoS2 nanosheets. Opt. Laser Eng., 128, 105997(2020).

    [137] S. Kaushik, U. K. Tiwari, A. Deep, R. K. Sinha. Two-dimensional transition metal dichalcogenides assisted biofunctionalized optical fiber SPR biosensor for efficient and rapid detection of bovine serum albumin. Sci. Rep., 9, 6987(2019).

    [138] K. Liu, J. H. Zhang, J. F. Jiang, T. H. Xu, S. Wang, P. X. Chang, Z. Zhang, J. Y. Ma, T. G. Liu. MoSe2-Au Based sensitivity enhanced optical fiber surface plasmon resonance biosensor for detection of goat-anti-rabbit IgG. IEEE Access, 8, 660-668(2020).

    [139] A. K. Mishra, S. K. Mishra, R. K. Verma. Graphene and beyond graphene MoS2: a new window in surface-plasmon-resonance-based fiber optic sensing. J. Phys. Chem. C, 120, 2893-2900(2016).

    [140] A. K. Sharma, A. K. Pandey, B. Kaur. Simulation study on comprehensive sensing enhancement of BlueP/MoS2-and BlueP/WS2-based fluoride fiber surface plasmon resonance sensors: analysis founded on damping, field, and optical power. Appl. Opt., 58, 4518-4525(2019).

    [141] M. S. Rahman, M. S. Anower, L. F. Abdulrazak. Modeling of a fiber optic SPR biosensor employing tin selenide (SnSe) allotropes. Results Phys., 15, 102623(2019).

    [142] S. Sharma, B. D. Gupta. Surface plasmon resonance based highly selective fiber optic dopamine sensor fabricated using molecular imprinted GNP/SnO2 nanocomposite. J. Lightwave Technol., 36, 5956-5962(2018).

    [143] R. Kant, B. D. Gupta. Fiber-optic SPR based acetylcholine biosensor using enzyme functionalized Ta2O5 nanoflakes for Alzheimer’s disease diagnosis. J. Lightwave Technol., 36, 4018-4024(2018).

    [144] , R. K. Verma. On the application of few layer Ti3C2 MXene on fiber optic SPR sensor for performance enhancement. Eur. Phys. J. D, 75, 5(2021).

    [145] Q. Wang, L. Y. Niu, J. Y. Jing, W. M. Zhao. Barium titanate film based fiber optic surface plasmon sensor with high sensitivity. Opt. Laser Technol., 124, 105899(2020).

    [146] S. H. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 287, 1989-1992(2000).

    [147] N. A. Sakthivel, A. Dass. Aromatic thiolate-protected series of gold nanomolecules and a contrary structural trend in size evolution. Acc. Chem. Res., 51, 1774-1783(2018).

    [148] H. Wu, F. Bai, Z. C. Sun, R. E. Haddad, D. M. Boye, Z. W. Wang, J. Y. Huang, H. Y. Fan. Nanostructured gold architectures formed through high pressure-driven sintering of spherical nanoparticle arrays. J. Am. Chem. Soc., 132, 12826-12828(2010).

    [149] J. J. Cheng, G. Le Saux, J. Gao, T. Buffeteau, Y. Battie, P. Barois, V. Ponsinet, M. H. Delville, O. Ersen, E. Pouget, R. Oda. GoldHelix: gold nanoparticles forming 3D helical superstructures with controlled morphology and strong chiroptical property. ACS Nano, 11, 3806-3818(2017).

    [150] C. Li, Z. Li, S. L. Li, Y. N. Zhang, B. P. Sun, Y. H. Yu, H. Y. Ren, S. Z. Jiang, W. W. Yue. LSPR optical fiber biosensor based on a 3D composite structure of gold nanoparticles and multilayer graphene films. Opt. Express, 28, 6071-6083(2020).

    [151] D. Daems, W. Pfeifer, I. Rutten, B. Sacca, D. Spasic, J. Lammertyn. Three-dimensional DNA origami as programmable anchoring points for bioreceptors in fiber optic surface plasmon resonance biosensing. ACS Appl. Mater. Interfaces, 10, 23539-23547(2018).

    [152] Y. Zhao, M. Lei, S. X. Liu, Q. Zhao. Smart hydrogel-based optical fiber SPR sensor for pH measurements. Sens. Actuators B, 261, 226-232(2018).

    [153] L. X. Kong, Y. X. Zhang, W. G. Zhang, Y. S. Zhang, T. Y. Yan, P. C. Geng, B. Wang. Lab-on-tip: protruding-shaped all-fiber plasmonic microtip probe toward in-situ chem-bio detection. Sens. Actuators B, 301, 127128(2019).

    [154] S. J. Guo, S. J. Dong. Metal nanomaterial-based self-assembly: development, electrochemical sensing and SERS applications. J. Mater. Chem., 21, 16704-16716(2011).

    [155] P. Colson, C. Henrist, R. Cloots. Nanosphere lithography: a powerful method for the controlled manufacturing of nanomaterials. J. Nanomater., 2013, 948510(2013).

    [156] Y. Wang, Z. J. Cui, X. J. Zhang, X. Zhang, Y. Q. Zhu, S. G. Chen, H. Hu. Excitation of surface plasmon resonance on multiwalled carbon nanotube metasurfaces for pesticide sensors. ACS Appl. Mater. Interfaces, 12, 52082-52088(2020).

    [157] Q. Wang, L. Wang. Lab-on-fiber: plasmonic nano-arrays for sensing. Nanoscale, 12, 7485-7499(2020).

    [158] V. G. Kravets, A. V. Kabashin, W. L. Barnes, A. N. Grigorenko. Plasmonic surface lattice resonances: a review of properties and applications. Chem. Rev., 118, 5912-5951(2018).

    [159] X. L. He, H. Yi, J. Long, X. Zhou, J. Yang, T. Yang. Plasmonic crystal cavity on single-mode optical fiber end facet for label-free biosensing. Appl. Phys. Lett., 108, 231105(2016).

    [160] I. Antohe, D. Spasic, F. Delport, J. Q. Li, J. Lammertyn. Nanoscale patterning of gold-coated optical fibers for improved plasmonic sensing. Nanotechnology, 28, 215301(2017).

    [161] N. Wang, M. Zeisberger, U. Hubner, M. A. Schmidt. Nanotrimer enhanced optical fiber tips implemented by electron beam lithography. Opt. Mater. Express, 8, 2246-2255(2018).

    [162] C. Ciraci, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, D. R. Smith. Probing the ultimate limits of plasmonic enhancement. Science, 337, 1072-1074(2012).

    [163] W. Q. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, K. B. Crozier. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun., 7, 11495(2016).

    [164] J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, D. R. Smith. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater., 18, 668-678(2019).

    [165] C. Lee, B. Lawrie, R. Pooser, K. G. Lee, C. Rockstuhl, M. Tame. Quantum plasmonic sensors. Chem. Rev., 121, 4743-4804(2021).

    [166] S. Kim, N. Yu, X. Z. Ma, Y. Z. Zhu, Q. S. Liu, M. Liu, R. X. Yan. High external-efficiency nanofocusing for lens-free near-field optical nanoscopy. Nat. Photonics, 13, 636-643(2019).

    [167] M. Danckwerts, L. Novotny. Optical frequency mixing at coupled gold nanoparticles. Phys. Rev. Lett., 98, 026104(2007).

    [168] P. Anger, P. Bharadwaj, L. Novotny. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett., 96, 113002(2006).

    [169] X. L. He, L. Yang, T. Yang. Optical nanofocusing by tapering coupled photonic-plasmonic waveguides. Opt. Express, 19, 12865-12872(2011).

    [170] C. M. Miyazaki, D. J. Kinahan, R. Mishra, F. Mangwanya, N. Kilcawley, M. Ferreira, J. Ducree. Label-free, spatially multiplexed SPR detection of immunoassays on a highly integrated centrifugal lab-on-a-disc platform. Biosens. Bioelectron., 119, 86-93(2018).

    [171] M. Q. Zou, C. R. Liao, S. Liu, C. Xiong, C. Zhao, J. L. Zhao, Z. S. Gan, Y. P. Chen, K. M. Yang, D. Liu, Y. Wang, Y. P. Wang. Fiber-tip polymer clamped-beam probe for high-sensitivity nanoforce measurements. Light Sci. Appl., 10, 171(2021).

    [172] T. Q. Zhang, M. D. Wang, Y. Xue, J. L. Xu, Z. D. Xie, S. N. Zhu. Liquid metal as a broadband saturable absorber for passively Q-switched lasers. Chin. Opt. Lett., 18, 111801(2020).

    [173] R. T. Liu, X. Y. Ye, T. H. Cui. Recent progress of biomarker detection sensors. Research, 2020, 7949037(2020).

    [174] P. X. Chang, K. Liu, J. F. Jiang, T. H. Xu, Z. Zhang, J. Y. Ma, Y. H. Zhao, J. H. Zhang, X. B. Li, T. G. Liu. The temperature responsive mechanism of fiber surface plasmon resonance sensor. Sens. Actuators A Phys., 309, 112022(2020).

    [175] L. M. Wu, Z. T. Ling, L. Y. Jiang, J. Guo, X. Y. Dai, Y. J. Xiang, D. Y. Fan. Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor. IEEE Photon. J., 8, 4801409(2016).

    Jianying Jing, Kun Liu, Junfeng Jiang, Tianhua Xu, Shuang Wang, Jinying Ma, Zhao Zhang, Wenlin Zhang, Tiegen Liu. Performance improvement approaches for optical fiber SPR sensors and their sensing applications[J]. Photonics Research, 2022, 10(1): 126
    Download Citation