
- Chinese Optics Letters
- Vol. 19, Issue 7, 072701 (2021)
Abstract
1. Introduction
Heterodyne detection is a powerful tool to capture low-frequency weak signals (
According to the current heterodyne detection theory[
Inspired by the work on quantum noise cancellation of a parametric amplifier by correlating the amplifier’s internal degree with the input signal through quantum entanglement[
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
Figure 1.Schematics for heterodyne detection of light. (a) The signal mode enters into the detector together with an unexcited mode (image band vacuum) that gives rise to 3 dB heterodyne noise[
2. Heterodyne Detector
Let us consider a quantum field of signal light that has a continuum of frequency modes[
For simplicity, let us further assume that the detected light is a single-frequency coherent field with an excited mode at the angular frequency of
Here,
To quantitatively evaluate the noise performance of a heterodyne detector, we make use of the quantity of noise figure (NF),
Here,
Here,
3. Detector’s Noise Figure
Plugging Eqs. (8), (11), and (12) into Eq. (7), one arrives at
From Eq. (13), it follows that the photoelectric signal from the detector consists of a quadrature component
Next, we proceed to calculate the noise power density
Under the approximations of a strong oscillator and fast response speed for the detector, the auto-correlation function Eq. (16) may be readily reduced to
Plugging Eq. (17) into Eq. (15) leads to
From the definition of the correlation function
In the following, we are going to evaluate
Here,
Although
With higher amplification gains, stronger quantum correlations between the signal and image band (idler) modes are expected for better suppression of the 3 dB heterodyne noise. The gain may be limited by practically available LO power levels for the heterodyne detection, but a high gain of up to 45 dB is still allowed if a 20 mW LO is used for space-based GW searching[
The factor of two here accounts for the contribution of negative-frequency components when the calculation is compared with practical measurement[
From Eqs. (5), (14), and (29), it follows that the SNR of the amplified signal at the detector’s output is
Using Eqs. (3), (4), and (30), one finally obtains the NF of the heterodyne detector,
4. Discussions
The result of Eq. (31) proves that the noise performance of a heterodyne detector can be enhanced by the quantum correlation between the image band vacuum and the signal mode, without beating the quantum noise limit though. The price to pay is the change of the phase sensitivity of the detector: the output signal becomes sensitive to the LO phase. The good news is that, no matter what the input phase
Another interesting feature in the studied heterodyne detection scheme revealed by Eq. (31) is that the NF of the detector is independent of imperfect quantum efficiency
5. Conclusion
We have studied a detector’s noise performance enhancement by quantum correlation in heterodyne detection. The SNR degradation of the output signal from the detector can be overcome by correlating the image band vacuum with the signal mode using a linear high-gain amplifier. We have shown that the studied heterodyne detection scheme requires no phase control for the input signal, which is of essence for space-borne GW experiments. The presented work paves the way to overcome vacuum-induced SNR degradation for optical precision measurements with heterodyne detectors, and the achieved results should be of great interest to space-borne experiments for low-frequency GW signal searching.
References
[1] M. Armano, H. Audley, G. Auger, J. T. Baird, M. Bassan, P. Binetruy, M. Born, D. Bortoluzzi, N. Brandt, M. Caleno, L. Carbone, A. Cavalleri, A. Cesarini, G. Ciani, G. Congedo, A. M. Cruise, K. Danzmann, M. de Deus Silva, R. De Rosa, M. Diaz-Aguiló, L. Di Fiore, I. Diepholz, G. Dixon, R. Dolesi, N. Dunbar, L. Ferraioli, V. Ferroni, W. Fichter, E. D. Fitzsimons, R. Flatscher, M. Freschi, A. F. García Marín, C. García Marirrodriga, R. Gerndt, L. Gesa, F. Gibert, D. Giardini, R. Giusteri, F. Guzmán, A. Grado, C. Grimani, A. Grynagier, J. Grzymisch, I. Harrison, G. Heinzel, M. Hewitson, D. Hollington, D. Hoyland, M. Hueller, H. Inchauspé, O. Jennrich, P. Jetzer, U. Johann, B. Johlander, N. Karnesis, B. Kaune, N. Korsakova, C. J. Killow, J. A. Lobo, I. Lloro, L. Liu, J. P. López-Zaragoza, R. Maarschalkerweerd, D. Mance, V. Martín, L. Martin-Polo, J. Martino, F. Martin-Porqueras, S. Madden, I. Mateos, P. W. McNamara, J. Mendes, L. Mendes, A. Monsky, D. Nicolodi, M. Nofrarias, S. Paczkowski, M. Perreur-Lloyd, A. Petiteau, P. Pivato, E. Plagnol, P. Prat, U. Ragnit, B. Raïs, J. Ramos-Castro, J. Reiche, D. I. Robertson, H. Rozemeijer, F. Rivas, G. Russano, J. Sanjuán, P. Sarra, A. Schleicher, D. Shaul, J. Slutsky, C. F. Sopuerta, R. Stanga, F. Steier, T. Sumner, D. Texier, J. I. Thorpe, C. Trenkel, M. Tröbs, H. B. Tu, D. Vetrugno, S. Vitale, V. Wand, G. Wanner, H. Ward, C. Warren, P. J. Wass, D. Wealthy, W. J. Weber, L. Wissel, A. Wittchen, A. Zambotti, C. Zanoni, T. Ziegler, P. Zweifel. Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results. Phys. Rev. Lett., 116, 231101(2006).
[2] J. Luo, L.-S. Chen, H.-Z. Duan, Y.-G. Gong, S. Hu, J. Ji, Q. Liu, J. Mei, V. Milyukov, M. Sazhin, C.-G. Shao, V. T. Toth, H.-B. Tu, Y. Wang, Y. Wang, H.-C. Yeh, M.-S. Zhan, Y. Zhang, V. Zharov, Z.-B. Zhou. TianQin: a space-borne gravitational wave detector. Class. Quantum Grav., 33, 035010(2016).
[3] S. Babak, J. Gair, A. Sesana, E. Barausse, C. F. Sopuerta, C. P. L. Berry, E. Berti, P. Amaro-Seoane, A. Petiteau, A. Klein. Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals. Phys. Rev. D, 95, 103012(2017).
[4] J. H. Shapiro, H. P. Yuen, J. A. Machado Mata. Optical communication with two-photon coherent states-part II: photoemissive detection and structured receiver performance. IEEE Trans. Information Theory, 25, 179(1979).
[5] H. P. Yuen, V. W. S. Chan. Noise in homodyne and heterodyne detection. Opt. Lett., 8, 177(1983).
[6] Y. Yamamoto, H. A. Haus. Preparation, measurement and information capacity of optical quantum states. Rev. Mod. Phys., 58, 1001(1986).
[7] C. M. Caves, P. D. Drummond. Quantum limits on bosonic communication rates. Rev. Mod. Phys., 66, 481(1994).
[8] K. Bencheikh, O. Lopez, I. Abram, J. A. Levenson. Improvement of photodetection quantum efficiency by noiseless optical preamplification. Appl. Phys. Lett., 66, 399(1995).
[9] A. Sesana. Prospects for multiband gravitational-wave astronomy after GW150914. Phys. Rev. Lett., 116, 23110(2016).
[10] H. P. Yuen, J. H. Shapiro. Optical communication with two-photon coherent states–part Ill: quantum measurements realizable with photoemissive detectors. IEEE Transactions on Information Theory, 26, 78(1980).
[11] Y.-Q. Li, D. Guzun, M. Xiao. Sub-shot-noise-limited optical heterodyne detection using an amplitude-squeezed local oscillator. Phys. Rev. Lett., 82, 5225(1999).
[12] A. A. M. Marino, C. R. Stroud, V. Wong, R. S. Bennink, R. W. Boyd. Bichromatic local oscillator for detection of two-mode squeezed states of light. J. Opt. Soc. Am. B, 24, 335(2007).
[13] W. Li, X. D. Yu, J. Zhang. Measurement of the squeezed vacuum state by a bichromatic local oscillator. Opt. Lett., 40, 5299(2015).
[14] S. Feng, D. C. He, B. Y. Xie. Quantum theory of phase-sensitive heterodyne detection. J. Opt. Soc. Am. B, 33, 1365(2016).
[15] F. Liu, Y. Zhou, J. Yu, G. Guo, Y. Wu, S. Xiao, D. Wei, Y. Zhang, X. Jia, M. Xiao. Squeezing-enhanced fiber Mach–Zehnder interferometer for low-frequency phase measurement. Appl. Phys. Lett., 110, 021106(2017).
[16] B. Y. Xie, S. Feng. Squeezing-enhanced heterodyne detection of 10 Hz atto-watt optical signals. Opt. Lett., 43, 6073(2018).
[17] J. Kong, F. Hudelist, Z. Y. Ou, W. P. Zhang. Cancellation of internal quantum noise of an amplifier by quantum correlation. Phys. Rev. Lett., 111, 033608(2013).
[18] C. M. Caves. Quantum limits on noise in linear amplifiers. Phys. Rev. D, 26, 1817(1982).
[19] Z. Y. Ou, S. F. Pereira, H. J. Kimble. Quantum noise reduction in optical amplification. Phys. Rev. Lett., 70, 3239(1993).
[20] Y. J. Wang, Y. H. Tian, X. C. Sun, L. Tian, Y. H. Zheng. Noise transfer of pump field noise with analysis frequency in a broadband parametric downconversion process. Chin. Opt. Lett., 19, 052703(2021).
[21] R. J. Glauber. Coherent and incoherent states of the radiation field. Phys. Rev., 131, 2766(1963).
[22] Z. Y. Ou, C. K. Hong, L. Mandel. Coherence properties of squeezed light and the degree of squeezing. J. Opt. Soc. Am. B, 4, 1574(1987).
[23] L. Mandel, E. Wolf. Optical Coherence and Quantum Optics(1995).
[24] R. J. Glauber. The quantum theory of optical coherence. Phys. Rev., 130, 2529(1963).
[25] A. Mosset, F. Devaux, E. Lantz. Spatially noiseless optical amplification of images. Phys. Rev. Lett., 94, 223603(2005).
[26] R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, P. D. Lett. Low-noise amplification of a continuous-variable quantum state. Phys. Rev. Lett., 103, 010501(2009).
[27] N. V. Corzo, A. M. Marino, K. M. Jones, P. D. Lett. Noiseless optical amplifier operating on hundreds of spatial modes. Phys. Rev. Lett., 109, 043602(2012).
[28] X. C. Sun, Y. J. Wang, L. Tian, Y. H. Zheng, K. C. Peng. Detection of 13.8 dB squeezed vacuum states by optimizing the interference efficiency and gain of balanced homodyne detection. Chin. Opt. Lett., 17, 072701(2019).
[29] T. Torounidis, P. A. Andrekson, B.-E. Olsson. Fiber-optical parametric amplifier with 70-dB gain. IEEE Photon. Tech. Lett., 18, 1194(2006).

Set citation alerts for the article
Please enter your email address