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Heterodyne detectors as phase-insensitive (PI) devices have found important applications in precision measurements such
as space-based gravitational-wave (GW) observation. However, the output signal of a PI heterodyne detector is supposed to
suffer from signal-to-noise ratio (SNR) degradation due to image band vacuum and imperfect quantum efficiency. Here, we
show that the SNR degradation can be overcome when the image band vacuum is quantum correlated with the input signal.
We calculate the noise figure of the detector and prove the feasibility of heterodyne detection with enhanced noise per-
formance through quantum correlation. This work should be of great interest to ongoing space-borne GW signal searching
experiments.
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1. Introduction

Heterodyne detection is a powerful tool to capture low-
frequency weak signals (≤ 1 kHz) carried by optical beams,
e.g., interferometric signals generated by gravitational-
wave (GW) disturbances at space-borne observatories[1–3].
Nevertheless, traditional heterodyne detectors as phase-
insensitive (PI) devices inevitably suffer from signal-to-noise
ratio (SNR) degradation, caused by the image band vacuum
at its input[4–7] and imperfect-quantum-efficiency-induced vac-
uum at its output[8]. As space-based GW detection systems are
approaching their quantum noise limits[9], the quantum noise
property of heterodyne detectors will become an important lim-
iting factor for further system sensitivity improvement in the
near future. Therefore, conquering the SNR degradation in
heterodyne detection, if possible, may considerably benefit
GW signal searching experiments, because the volume of space
that is probed for potential GW sources increases as the cube of
the strain sensitivity.
According to the current heterodyne detection theory[4,5],

3 dB noise penalty occurs in heterodyne detection due to the
image band vacuum at the detector’s input. It was suggested that
the 3 dB heterodyne noise might be suppressed by injection of
light in two-photon coherent states at the degenerate frequency
of the image band vacuum into the detector[10], which unfortu-
nately has never been implemented so far. Using an amplitude-
squeezed local oscillator (LO), the quantum noise of a one-port
heterodyne detector may be reduced[11], yet the problem of the

3 dB extra heterodyne noise due to the image band vacuum was
not addressed. A phase-sensitive (PS) heterodyne detector with a
bichromatic LO has proven to be noiseless[12–16], but its phase
sensitivity[14] requires phase control for the input signal that
is intractable in the detection scheme of ongoing space-based
GW experiments, where violent disturbance to the phase of
the input signal is inevitable[1–3].
Inspired by the work on quantumnoise cancellation of a para-

metric amplifier by correlating the amplifier’s internal degree
with the input signal through quantum entanglement[17], we
study heterodyne detection enhanced by quantum correlation
between the image band vacuum and the signal, given that
the image band vacuummay be thought of as the internal degree
of a detector according to the theory of the linear amplifier[18]. In
this study, we focus on the following detection scenario: prior to
being sent to a heterodyne detector for detection, the signal light
is firstly fed into a noiseless parametric amplifier[19], whose
pump light is at twice the frequency of the heterodyne LO,
and, hence, quantum correlation is established between the sig-
nal mode and the image band (idler) mode in a vacuum state
(Fig. 1). Here, we show that, if the amplified signal light is
received by the heterodyne detector, the aforementioned 3 dB
heterodyne noise can be completely eliminated due to quantum
correlation. Moreover, our theoretical results show that optical
amplification prior to signal detection may also serve to defeat
the noise performance degradation in heterodyne detection due
to imperfect quantum efficiency, akin to the case of direct
detection[8].
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2. Heterodyne Detector

Let us consider a quantum field of signal light that has a con-
tinuum of frequency modes[14,21–23]:

Ê���
s �r,t� = i��������

ε0V
p

X
k

�
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2
ℏωk

�1
2

âkei�k·r−ωk t�, (1)

whereinV stands for the quantization volume, ε0 is the dielectric
permittivity of vacuum, k is the set of plane-wave modes withωk

the corresponding angular frequency of each mode, and
ℏ ≡ h=2π, in which h represents the Planck constant. The ampli-
tude operator âk is the photon annihilation operator for mode k
and stays constant if there is no free electrical charge in the
space[21]. The two mutually adjoint operators âk and â†k obey
the following commutation relations:

�âk ,âk 0 � = �â†k ,â†k 0 � = 0, �âk ,â†k 0 � = δk,k 0 : (2)

For simplicity, let us further assume that the detected light is a
single-frequency coherent field with an excited mode at the
angular frequency of ωs. If directly received by a detector with
unity active detection area, the light field has an intrinsic SNR,

SNRin =
cε0
ℏωsB

hÊ�−�
s �t�Ê���

s �t�i = cε0
2ℏωsB

jαsj2: (3)

Here, c stands for the speed of light in vacuum, B
represents the measurement bandwidth inversely proportional
to the measurement time, αs ≡ hâsi ×

��������
ℏωs

p
=

��������
ε0V

p
, and

Ê�−�
s �t� = �Ê���

s �t��†.
To quantitatively evaluate the noise performance of a hetero-

dyne detector, we make use of the quantity of noise figure (NF),

NF = 10 log10
SNRin

SNRout
, (4)

where SNRout is the signal SNR at the detector’s output,

SNRout ≡
Pout

χ�Ω� · B : (5)

Here, Pout is the average power of the output photoelectric sig-
nal produced by the detector, and χ�Ω� represents the average
noise power density of the photoelectric signal at Ω = �ωs −
ωi�=2 (ωi stands for the angular frequency of the image band
mode, and ωs > ωi is assumed; moreover, the frequency of
the signal carried by the optical beam is much below the hetero-
dyne frequency). A lower NF value indicates better noise perfor-
mance for the detector. From Eqs. (3)–(5), it follows that
one needs the values of Pout and χ�Ω� to calculate the NF of
the detector. The average signal power Pout may be figured
out with

Pout =
1
T

Z
T

0
dtJ2−�t�, (6)

wherein J−�t� is the average differential photocurrent signal at
the detector’s output[14,22],

J−�t� = η

Z
∞

0
dt 0j�t 0�hÎ2�t − t 0� − Î1�t − t 0�i, (7)

to which a similar result may be obtained in semiclassical treat-
ment[23]. Here, η is the quantum efficiency of the detector in
units of �ℏωs�−1 (the average number of photoelectrons per pho-
ton energy), j�t� is the output current pulse produced by a
photoemission, and j�t� = 0 for t < 0. Î1,2�t� are the light inten-
sities at the two output ports of the detector,

Î1,2�t� = �cε0=2�fε�−�l �t�ε���
l �t� � Ê�−�

a �t�Ê���
a �t�

± i�ε���
l �t�Ê�−�

a �t� − ε�−�l �t�Ê���
a �t��g, (8)

(a)

(b)

Fig. 1. Schematics for heterodyne detection of light. (a) The signal mode
enters into the detector together with an unexcited mode (image band
vacuum) that gives rise to 3 dB heterodyne noise[4,5,7]. (b) Before being
received by the detector, the signal light passes through a parametric ampli-
fier where quantum correlation[17] is generated between the signal mode and
the image band vacuum for reduction of the 3 dB heterodyne noise. ωs,i,l,
angular frequency of the signal/image band/local oscillator mode; Ê���

s,a (t),
quantum field of signal/amplified light beam; εl(�)(t), classical field of local
oscillator light beam; 50-50, balanced beamsplitter; LA, linear amplifier;
J−(t)≡ J2(t)− J1(t), average differential photocurrent signal from the detector.
Inset: a typical parametric amplifier consisting of a type-I periodically-poled
KTiOPO4 (PPKTP) crystal inside an optical cavity and a laser pump

[20] may be
used to realize the proposed heterodyne detection withωp =ωs +ωi, whereωp

is the pump angular frequency. M1 & M2, cavity mirrors; DM, dichromatic
mirror.
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where ε���
l �t� = εle−iωlt�ikl ·r�iθl is the single-frequency classical

field of the LO, with both the amplitude εl and phase θl being

real numbers. ε�−�l �t� = �ε���
l �t��*, and Ê���

a �t� is the field of
the amplified signal produced in the amplifier [Fig. 1(b)],
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b̂kei�k·r−ωk t�, (9)

which is related to the input light field Ê���
s �t� through the linear

evolution equation[18],

b̂s = âs cosh r � â†i sinh r, b̂i = â†s sinh r � âi cosh r: (10)

Here, b̂s,i is the photon annihilation operator of the signal

(idler or image band) mode of Ê���
a �r,t�, and r is a real constant

determined by the strength and duration of the parametric
amplification. From Eqs. (1), (9), and (10), it is not difficult
to show

Ê���
a �r,t� = Ê���

s �r,t� cosh r − Ê�−�
i �r,t�e2i�kl ·r−ωlt� sinh r, (11)

in which

Ê���
i �r,t� ≡ i��������
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2

âkei�k·r−ωk t�, (12)

provided that ωs � ωi = 2ωl and ks � ki = 2kl.

3. Detector’s Noise Figure

Plugging Eqs. (8), (11), and (12) into Eq. (7), one arrives at

J−�t� =
���
2

p
ceε0ηεljαsj

× �er cos θl cos�Ωt − Δθ� − e−r sin θl sin�Ωt − Δθ��, (13)

where Δθ = Δk · r − θs, θs is the phase of the signal mode,
Δk ≡ ks − kl = kl − ki, and we make use of ωs ≈ ωi since jωs −
ωij < ωs,i for heterodyne detection. In addition, the detector
assumes a sufficient response speed in photoemission, and,
hence, j�t� = eδ�t�, where δ�t� is the Dirac function with e being
the charge of the electron.
From Eq. (13), it follows that the photoelectric signal from the

detector consists of a quadrature component ∼ cos�Ωt − Δθ�
that is amplified by a factor of er and a conjugate quadrature
component ∼ sin�Ωt − Δθ� that is reduced by the same factor,
which holds true no matter what the input signal phase θs is.
When the LO phase θl is controlled such that θl =mπ (m is
any integer), the heterodyne detector produces an amplified sig-
nal J−�t� = ±

���
2

p
ceε0ηεljαsjer cos�Ωt − Δθ� whose average

power is, according to Eq. (6),

Pout = �ceε0ηεljαsj�2e2r , (14)

with an amplification gain of G ≡ e2r . On the other hand, if the
LO phase θl = �2m� 1�π=2, the heterodyne detector produces

a reduced signal J �t� = ±
���
2

p
ceε0ηεljαsje−r sin�Ωt − Δθ�. What

is interesting is that the phase of the input signal, θs, does not
need to be controlled, which is of technical essence for the stud-
ied detection scheme to be adapted to space-based GW experi-
ments, where violent signal phase disturbances are expected.
Next, we proceed to calculate the noise power density χ�Ω� of

the heterodyne signal with the Fourier transform[14],

χ�ω� = 1
T

Z
T

0
dt

Z �∞

−∞
dτeiωτhΔJ−�t�ΔJ−�t � τ�i, (15)

wherein the auto-correlation function of the differential photo-
current fluctuations is[22]

hΔJ−�t�ΔJ−�t � τ�i

=
X2
i=1

η

Z
∞

0
dt 0hÎi�t − t 0�iji�t 0�ji�t 0 � τ�

�
X2
i,j=1

η2�−1�i�j

×
ZZ

∞

0
dt 0dt 0 0ji�t 0�jj�t 0 0�λij�t − t 0, τ� t 0 − t 0 0�, (16)

which may be derived also under semiclassical approxima-
tions[23]. Here, ji,j�t� is a photoemission-induced current pulse at

the output ports of the detector, λij�t,i� ≡ hT∶ΔÎi�t�ΔÎ j�t � i�∶i
is the correlation function of light-intensity fluctuations, and the
symbol T∶∶ means time and normal ordering of the field oper-

ators Ê�±�
a �t�. Photodiode noise is not included in Eq. (15) since

we consider only the situation in which the system sensitivity in
the frequency band of interest is limited by the quantum noise of
light[9].
Under the approximations of a strong oscillator and fast

response speed for the detector, the auto-correlation function
Eq. (16) may be readily reduced to

hΔJ−�t�ΔJ−�t � τ�i = ηcε0e2ε2l δ�τ� � η2e2
X2
i,j=1

�−1�i�jλij�t,τ�:

(17)

Plugging Eq. (17) into Eq. (15) leads to

χ�ω� = ηcε0e2ε2l � η2e2
X2
i,j=1

�−1�i�j

×
1
T

Z
T

0
dt

Z �∞

−∞
dτeiωτλij�t,τ�, (18)

wherein the first term on the right hand side represents the
detection shot noise.
From the definition of the correlation function λij�t,τ� and

Eq. (8), it follows that
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λij�t,τ� = 4−1c2ε20�−1�i�j

× �hΔÊ�−�
a �t�ΔÊ���

a �t � τ�iε���
l �t�ε�−�l �t � τ�

� hΔÊ�−�
a �t � τ�ΔÊ���

a �t�iε�−�l �t�ε���
l �t � τ�

− hΔÊ�−�
a �t�ΔÊ�−�

a �t � τ�iε���
l �t�ε���

l �t � τ�
− hΔÊ���

a �t � τ�ΔÊ���
a �t�iε�−�l �t�ε�−�l �t � τ��, (19)

from which all the low-order terms in εl are dropped. With the
help of the definitions of

Γ�1,1�
x �t,τ� ≡ hΔÊ�−�

x �t�ΔÊ���
x �t � τ�ieiωlτ ,

Γ�2,0�
x �t,τ� ≡ hΔÊ�−�

x �t�ΔÊ�−�
x �t � τ�ie−iωl�2 t�τ�, (20)

wherein x = s, i, a, Eq. (19) may be rewritten as

λij�t,τ� = 4−1c2ε20ε
2
1�−1�i�j × �Γ�1,1�

a �t,τ� − Γ�2,0�
a �t,τ�e2iθ 0

1 � c:c:�,
(21)

in which θ 0
1 ≡ kl · r� θl. From Eqs. (18) and (21), it follows that

χ�ω� = ηcε0e2ε2l � η2c2ε20e
2ε2l

1
T

Z
T

0
dt

Z �∞

−∞
dτeiωτ

× �Γ�1,1�
a �t,τ� − Γ�2,0�

a �t,τ�e2iθ 0
1 � c:c:�: (22)

In the following, we are going to evaluate Γ�1,1�
a �t,τ� and

Γ�2,0�
a �t,τ� in Eq. (22) using Eqs. (11), (12), and (20). One may

show without much difficulty that

Γ�1,1�
a �t,τ� = cosh2rΓ�1,1�

s �t,τ�
� sinh2re−iωsτhΔÊ���

i �t�ΔÊ�−�
i �t � τ�i

− sinh r cosh r�Γ�2,0��t,τ�e2ikl ·r � c:c:�
= sinh2re−iωlτh�Ê���

i �t�,Ê�−�
i �t � τ��i, (23)

Γ�2,0�
a �t,τ�= cosh2rΓ�2,0�

s �t,τ�
� sinh2re−4ikl ·r�Γ�2,0�

i �t,τ��* − sinh r cosh r

×e−i�ωlτ�2kl ·r�hΔÊ���
i �t�ΔÊ�−�

s �t� τ�i− sinh r cosh r

×ei�ωlτ−2kl ·r�hΔE�−�
s �t�ΔE���

i �t� τ�i
=−sinh r cosh r×e−i�ωlτ�2kl ·r�h�Ê���

i �t�,Ê�−�
s �t� τ��i:

(24)

Here, Γ�2,0��t,τ� ≡ hΔÊ�−�
s �t�ΔÊ�−�

i �t � τ�ie−iωl�2 t�τ�. In the

last steps, Γ�1,1�
s �t,τ� = 0, Γ�2,0��t,τ� = 0, Γ�2,0�

s,i �t,τ� = 0,

hΔÊ�−�
s �t � τ�ΔÊ���

i �t�i = 0, and hΔÊ�−�
s �t�ΔÊ���

i �t � τ�i = 0,

given that the fields Ê���
s,i �t� are initially in coherent states[24].

Although Ê���
s,i �t� in Eqs. (1) and (12) are expressed in three-

dimensional (3D) expansions, all of the above calculations hold
valid for their one-dimensional (1D) expansions as well. For

optical fields in the form of collimated beams, one may substi-
tute the 1D versions of Eqs. (1) and (12) into Eqs. (23) and (24),
leading to

Γ�1,1�
a �t,τ� − Γ�2,0�

a �t,τ�e2iθ 0
1 =

ℏ sinh r
2πcε0

Z �∞

0
dω 0ei�ω

0−ωl�τ

×
�
sinh rj2ωl − ω 0j � e2iθl cosh r

��������������������������
ω 0j2ωl − ω 0j

p �
, (25)

after the summation over k is replaced by an integration:
�1=V�Pk → �1=2π�∫ dk (k = ±ω 0=c is the wave number of
light). Plugging Eq. (25) into Eq. (22) and after somemathemati-
cal manipulations, one arrives at

χ�ω� = ηcε0e2ε2l �1� ηℏ sinh rF�ω��, (26)

in which

F�ω� ≡ sinh rjωl � ωj � sinh rjωl − ωj

�
�
e2iθl cosh r

�����������������
ω2
l − ω2

q
� c:c:

�
: (27)

With higher amplification gains, stronger quantum correla-
tions between the signal and image band (idler) modes are
expected for better suppression of the 3 dB heterodyne noise.
The gain may be limited by practically available LO power levels
for the heterodyne detection, but a high gain of up to 45 dB is still
allowed if a 20 mW LO is used for space-based GW searching[2].
Therefore, we will consider only the high-gain cases for NF cal-
culations, i.e., sinh r ≈ cosh r ≈ er=2 ≫ 1, and suppose that the
LO phase is controlled for detection of the amplified (anti-
squeezed) quadrature of the signal. In addition, the LO optical
frequency is much higher than the heterodyne frequency,
i.e., ωl ≫ ω. Under these approximations, Eq. (26) becomes

χ�ω� = 2ηcε0e2ε2l �1� �ηℏωl�e2r cos2θl�: (28)

The factor of two here accounts for the contribution of neg-
ative-frequency components when the calculation is compared
with practical measurement[14]. From Eq. (28), it follows that the
heterodyne detector produces a maximal amplified signal at its
output when θl = 0, and the corresponding noise power level of
the output signal is

χ�ω� = 2ηcε0e2ε2l �ηℏωl�e2r: (29)

From Eqs. (5), (14), and (29), it follows that the SNR of the
amplified signal at the detector’s output is

SNRout =
Pout

χ�Ω� · B =
�ceε0ηεljαsj�2e2r

2ηcε0e2ε2l �ηℏωl�e2rB
=

cε0
2ℏωlB

jαsj2: (30)

Using Eqs. (3), (4), and (30), one finally obtains the NF of the
heterodyne detector,
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NF = 10 log10
SNRin

SNRout
= 10 log10

ωl

ωs
= 0 dB, (31)

where the approximation in the last step is based on the fact that
jωl − ωsj=ωl → 0 for heterodyne detection.

4. Discussions

The result of Eq. (31) proves that the noise performance of a
heterodyne detector can be enhanced by the quantum correla-
tion between the image band vacuum and the signal mode, with-
out beating the quantum noise limit though. The price to pay is
the change of the phase sensitivity of the detector: the output
signal becomes sensitive to the LO phase. The good news is that,
nomatter what the input phase θs is, the amplifier will automati-
cally amplify the cos�Ωt − Δθ� quadrature component of the
detected signal with a gain of G = er , as shown by Eq. (13).
Therefore, the practical difficulty in the phase control for the
input signal imposed by space-based GW experiments does
not put any fundamental limit to the implementation of hetero-
dyne detection enhanced by quantum correlation.
Another interesting feature in the studied heterodyne detec-

tion scheme revealed by Eq. (31) is that the NF of the detector is
independent of imperfect quantum efficiency η. It has been
known for decades that the NF of a regular detector with imper-
fect quantum efficiency is[8,25–27]

NF = 10 log10�ξ−1�, (32)

where ξ = ηℏωs < 1 in practice. In other words, a usual detector
with lower η entails higher NF and poorer noise performance[28].
For the direct detection scheme, optical amplification prior to
signal detection may serve to conquer the NF degradation
due to non-perfect quantum efficiency[8]. Here, in this work,
we have shown the same effect for heterodyne detection, i.e., the
“beamsplitter noise” due to optical loss not affecting the SNR of a
signal amplified by an amplifier without extra noises such as
amplified spontaneous emission[29]. In the high-gain limit,
Eq. (31) shows that the NF of the heterodyne detector
approaches its best value of 0 dB despite imperfect quantum effi-
ciency, from which space-based GW experiments will surely
benefit.

5. Conclusion

We have studied a detector’s noise performance enhancement
by quantum correlation in heterodyne detection. The SNR deg-
radation of the output signal from the detector can be overcome
by correlating the image band vacuum with the signal mode
using a linear high-gain amplifier. We have shown that the stud-
ied heterodyne detection scheme requires no phase control for
the input signal, which is of essence for space-borne GW experi-
ments. The presented work paves the way to overcome vacuum-
induced SNR degradation for optical precision measurements
with heterodyne detectors, and the achieved results should be

of great interest to space-borne experiments for low-frequency
GW signal searching.
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G. Dixon, R. Dolesi, N. Dunbar, L. Ferraioli, V. Ferroni, W. Fichter,
E. D. Fitzsimons, R. Flatscher, M. Freschi, A. F. García Marín, C. García
Marirrodriga, R. Gerndt, L. Gesa, F. Gibert, D. Giardini, R. Giusteri,
F. Guzmán, A. Grado, C. Grimani, A. Grynagier, J. Grzymisch,
I. Harrison, G. Heinzel, M. Hewitson, D. Hollington, D. Hoyland,
M. Hueller, H. Inchauspé, O. Jennrich, P. Jetzer, U. Johann, B. Johlander,
N. Karnesis, B. Kaune, N. Korsakova, C. J. Killow, J. A. Lobo, I. Lloro,
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