• Journal of Semiconductors
  • Vol. 43, Issue 3, 030201 (2022)
Yi Hu1,2, Junchuan Liang1,2, Lixiu Zhang3, Zhong Jin1,2, and Liming Ding3
Author Affiliations
  • 1Key Laboratory of Mesoscopic Chemistry (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
  • 2Shenzhen Research Institute of Nanjing University, Shenzhen 518063, China
  • 3Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
  • show less
    DOI: 10.1088/1674-4926/43/3/030201 Cite this Article
    Yi Hu, Junchuan Liang, Lixiu Zhang, Zhong Jin, Liming Ding. 2D arsenenes[J]. Journal of Semiconductors, 2022, 43(3): 030201 Copy Citation Text show less
    References

    [1] K S Novoselov, A K Geim, S V Morozov et al. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [2] C Tan, X Cao, X J Wu et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev, 117, 6225(2017).

    [3] L Li, Y Yu, G J Ye et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 9, 372(2014).

    [4] M Chhowalla, H S Shin, G Eda et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 5, 263(2013).

    [5] Y Hu, T Chen, X Wang et al. Controlled growth and photoconductive properties of hexagonal SnS2 nanoflakes with mesa-shaped atomic steps. Nano Res, 10, 1434(2017).

    [6] C Kamal, M Ezawa. Arsenene: two-dimensional buckled and puckered honeycomb arsenic systems. Phys Rev B, 91, 085423(2015).

    [7] S Zhang, Z Yan, Y Li et al. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. Angew Chem Int Ed, 54, 3112(2015).

    [8] S Zhang, M Xie, F Li et al. Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities. Angew Chem Int Ed, 55, 1666(2016).

    [9] G Pizzi, M Gibertini, E Dib et al. Performance of arsenene and antimonene double-gate MOSFETs from first principles. Nat Commun, 7, 1(2016).

    [10] Y Wang, M Ye, M Weng et al. Electrical contacts in monolayer arsenene devices. ACS Appl Mater Interfaces, 9, 29273(2017).

    [11] Y Wang, P Huang, M Ye et al. Many-body effect, carrier mobility, and device performance of hexagonal arsenene and antimonene. Chem Mater, 29, 2191(2017).

    [12] H S Tsai, S W Wang, C H Hsiao et al. Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons. Chem Mater, 28, 425(2016).

    [13] Y Chen, C Chen, R Kealhofer et al. Black arsenic: a layered semiconductor with extreme in-plane anisotropy. Adv Mater, 30, 1800754(2018).

    [14] M Zhong, Q Xia, L Pan et al. Thickness-dependent carrier transport characteristics of a new 2D elemental semiconductor: black arsenic. Adv Funct Mater, 28, 1802581(2018).

    [15] Z H Qi, Y Hu, Z Jin et al. Tuning the liquid-phase exfoliation of arsenic nanosheets by interaction with various solvents. Phys Chem Chem Phys, 21, 12087(2019).

    [16] X Wang, Y Hu, J Mo et al. Arsenene: a potential therapeutic agent for acute promyelocytic leukaemia cells by acting on nuclear proteins. Angew Chem Int Ed, 59, 5151(2020).

    [17] Y Hu, Z H Qi, J Lu et al. Van der Waals epitaxial growth and interfacial passivation of two-dimensional single-crystalline few-layer gray arsenic nanoflakes. Chem Mater, 31, 4524(2019).

    [18] Y Hu, X Wang, Z Qi et al. Wet chemistry vitrification and metal-to-semiconductor transition of 2D gray arsenene nanoflakes. Adv Funct Mater, 31, 2106529(2021).