• Infrared and Laser Engineering
  • Vol. 47, Issue 12, 1230004 (2018)
Deng Qian1、2, Wu Decheng1, Kuang Zhiqiang1、2, Liu Dong1, Xie Chenbo1, and Wang Yingjian1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201847.1230004 Cite this Article
    Deng Qian, Wu Decheng, Kuang Zhiqiang, Liu Dong, Xie Chenbo, Wang Yingjian. 532 nm/660 nm dual wavelength lidar for self-calibration of water vapor mixing ratio[J]. Infrared and Laser Engineering, 2018, 47(12): 1230004 Copy Citation Text show less
    References

    [1] Solomon S, Qin D, Manning M, et al. Climate Change 2007: The Physical Science Basis [M]. New York: Cambridge University Press, 2007.

    [2] Lu Xianyang. Retrieval of horizontal distribution of aerosol mass concentration by micro pulse lidar[J]. Optics and Precision Engineering, 2017, 25(7): 1697-1704. (in Chinese)

    [3] Kunz A, Müller R, Homonnai V, et al. Extending water vapor trend observations over Boulder into the tropopause region: Trend uncertainties and resulting radiative forcing [J]. J Geophys Res Atmos, 2013, 118: 50831.

    [4] Wu Decheng, Liu Bo, Qi Fudi, et al. Tropospheric aerosols optical properties measured by a Raman-Mie lidar[J]. Journal of Atmospheric and Environmental Optics, 2011, 6(1): 18-26.

    [5] Zhao Ming, Xie Chenbo, Zhong Zhiqing, et al. High spectral resolution lidar for measuring atmospheric transmission[J]. Infrared and Laser Engineering, 2016, 45(S): S130002. (in Chinese)

    [6] Tao Zongming, Liu Dong, Ma Xiaomin, et al. Development and case study of side-scatter lidar system based on charge-coupled device[J]. Infrared and Laser Engineering, 2014, 43(10): 3282-3286. (in Chinese)

    [7] Wulfmeyer V, Hardesty R M, Turner D D, et al. A review of the remote sensing of lower tropospheric thermodynamic profiles and itsindispensable role for the understanding and the simulation of water and energy cycles[J]. Rev Geophys, 2015, 53(3): 819-895.

    [8] Whiteman D N, Venable D D, Landulfo E. Comments on: Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements[J]. Appl Opt, 2011, 50(15): 2170-2176.

    [9] Dr Isabelle Rüedi. Commission for instruments and methods of observation[D]. Geneva: WMO Observing and Information Systems Department, 2013: 4-7.

    [10] Davide Dionisi, Fernando Congeduti, Gian Luigi Liberti, et al. Calibration of a multichannel water vapor Raman lidar through noncollocated operational soundings: optimization and characterization of accuracy and variability[J]. J Atmos Oceanic Technol, 2009, 27(1): 108-121.

    [11] Sherlock V, Hauchecorne A, Lenoble J. Methodology for the independent calibration of Raman backscatter water-vapor lidar systems [J]. Appl Opt, 1999, 38(27): 5816-5837.

    [12] Leblanc T, McDermid I S. Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements [J]. Appl Opt, 2008, 47(30): 5592-5603.

    [13] Venable D D, Whiteman D N, Calhoun M N, et al. A lamp mapping technique for independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system [J]. Appl Opt, 2011, 50(23): 4622-4632.

    [14] Whiteman D N, Venable D D, Landulfo E. Comments on: Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements [J]. Appl Opt, 2011, 50(15): 2170-2176.

    [15] Wu D, Wang Z, Liu D, Xie C, et al. Independent calibration of water vapor Raman lidar by using additional elastic measurements at water vapor Raman wavelength[C]//EPJ Web of Conferences EDP Sciences, 2016, 119: 25007.

    [16] Brasseur G P, Orland J J, Tyndall G S. Atmospheric Chemistry and Global Change[M]. New York: Oxford University Press, 1999: 654.

    [17] Hu Xuan, Li Daojing, Tian He, et al. Impact and correction of phase error in ladar signal on synthetic aperture imaging[J]. Infrared and Laser Engineering, 2018, 47(3): 0306001. (in Chinese)

    [18] Liu Dong, Liu Qun, Bai Jian, et al. Data processing algorithms of the space-borne lidar CALIOP: a review[J]. Infrared and Laser Engineering, 2017, 46(12): 1202001. (in Chinese)

    [19] Avila G, Fernández J M, Maté B, et al. Ro-vibrational Raman cross sections of water vapor in the OH stretching region [J]. J Mol Spectrosc, 1999, 196: 77-92.

    CLP Journals

    [1] Lu Li, Kunming Xing, Ming Zhao, Qian Deng, Bangxin Wang, Peng Zhuang, Yun Shi. Raman-Mie scattering lidar system for detection of aerosol and water vapor in the atmosphere[J]. Infrared and Laser Engineering, 2023, 52(4): 20220484

    [2] Yingying Li, Ziwei Liu, Jingkun Zhang, Linlin Wu, Xue Ji, Mingchang Wang. Classification of full waveform data for monochromatic airborne LiDAR bathymetry based on waveform morphological features[J]. Infrared and Laser Engineering, 2023, 52(9): 20230096

    [3] Zhenxu Bai, Hui Chen, Zhanpeng Zhang, Kun Wang, Jie Ding, Yaoyao Qi, Bingzheng Yan, Sensen Li, Xiusheng Yan, Yulei Wang, Zhiwei Lv. Hundred-watt dual-wavelength diamond Raman laser at 1.2 /1.5 μm (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210685

    Deng Qian, Wu Decheng, Kuang Zhiqiang, Liu Dong, Xie Chenbo, Wang Yingjian. 532 nm/660 nm dual wavelength lidar for self-calibration of water vapor mixing ratio[J]. Infrared and Laser Engineering, 2018, 47(12): 1230004
    Download Citation