• Photonic Sensors
  • Vol. 1, Issue 4, 362 (2011)
Kyriacos KALLI*
Author Affiliations
  • Nanophotonics Research Laboratory, Department of Electrical Engineering and Information Technology, Cyprus University of Technology, Limassol, 3036, Cyprus
  • show less
    DOI: 10.1007/s13320-011-0039-y Cite this Article
    Kyriacos KALLI. Research at the University of Kent and Subsequent Research Activities[J]. Photonic Sensors, 2011, 1(4): 362 Copy Citation Text show less
    References

    [1] K. Kalli, “Investigation of linear and non-linear optical phenomena using high finesse ring resonators,” Ph.D. dissertation, Physics Department, the University of Kent, UK, 1992.

    [2] K. Kalli, D. Culverhouse, and D. A. Jackson, “Fiber frequency shifter based upon stimulated Brillouin scattering generation in high finesse ring resonators,” Opt. Lett., vol. 16, no. 19, pp. 1538-1540, 1991.

    [3] D. Culverhouse, K. Kalli, and D. A. Jackson, “Stimulated Brillouin scattering ring resonator laser for SBS gain studies and microwave generation,” Elec. Lett., vol. 27, no 22, pp. 2033-2035, 1991.

    [4] K. Kalli and D. A. Jackson, “Investigation and applications of all-fiber Brillouin ring resonator lasers,” Fiber & Int. Opt., vol. 14, no. 4, pp. 303-330, 1995.

    [5] K. Kalli and D. A. Jackson, “Ring resonator optical spectrum analyzer with 20 kHz resolution,” Opt. Lett., vol. 17, no. 15, pp. 1090-1092, 1992.

    [6] K. Kalli, M. Berwick, and D. A. Jackson, “Recent developments of fiber optic components for LDV signals,” in Laser Techniques and Applications in Fluid Mechanics: Proceedings of the 6th International Symposium, Lisbon, Portugal, July 20-23, pp. 25-43, 1992.

    [7] K. Kalli and D. A. Jackson, “Tunable fiber frequency shifter that uses an all-fiber ring resonator,” Opt. Lett., vol. 17, no. 17, pp. 1243-1245, 1992.

    [8] K. Kalli and D. A. Jackson, “Analysis of the dynamic response of a ring resonator to a time varying input signal,” Opt. Lett., vol. 18, no. 6, pp. 465-467, 1993.

    [9] K. Kalli and D. A. Jackson, “Dynamic response of high resolution ring resonator optical spectrometers to time varying input signals,” Fiber & Int. Opt., vol. 14, no. 3, pp. 211-223, 1995.

    [10] F. Farahi, K. Kalli, and D. A. Jackson, “An all-fiber ring resonator gyroscope using low coherence length source,” presented at Optical Fiber Sensors Conference, OFS-6’ 89, Paris, Sept., 1989.

    [11] A. Othonos and K. Kalli, Fiber Bragg gratings: fundamentals and applications in telecommunications and sensing. London: Artech House Inc., 1999.

    [12] Andreas Othonos, Kyriacos Kalli, David Pureur, and Alain Mugnier, “Fiber Bragg gratings” in Wavelength Filters for Fiber Optics, vol. 123. Herbert Venghaus Ed. Heidelberg: Springer (Springer Series in Optical Sciences), 2006.

    [13] A. Othonos and K. Kalli, “Bragg gratings in optical fibers,” in Handbook of Advanced Electronic and Photonic Materials and Devices, vol. 9, Chapter 9 (Nonlinear Optical Materials), H. S. Nalwa Ed. San Diego: Academic Press, 2000.

    [14] G. P. Brady, K. Kalli, D. J. Webb, L. Zhang, I. Bennion, and D. A. Jackson, “Extended range, coherence tuned dual wavelength interferometry using a superfluorescent fiber source and chirped fiber Bragg gratings,” Opt. Comm., vol. 134, no. 1-6, pp. 341-348, 1997.

    [15] G. P. Brady, K. Kalli, D. J. Webb, L. Reekie, J. L. Archambault, and D. A. Jackson, “Simultaneous interrogation of interferometric and Bragg grating sensors,” Opt. Lett., vol. 20, no. 11, pp. 1340-1342, 1995.

    [16] K. Kalli, G. P. Brady, D. J. Webb, L. Zhang, I. Bennion, and D. A. Jackson, “Wavelength division and spatial multiplexing using tandem interferometers for Bragg grating sensor networks,” Opt. Lett., vol. 20, no. 24, pp. 2544-2546, 1995.

    [17] Y. J. Rao, K. Kalli, G. P. Brady, D. J. Webb, L. Zhang, I. Bennion, and D. A. Jackson, “Spatiallymultiplexed fiber-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection,” Elec. Lett., vol. 31, no. 12, pp. 1009-1010, 1995.

    [18] G. P. Brady, K. Kalli, D. J. Webb, L. Reekie, J. L. Archambault, and D. A. Jackson, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. in Optoelec., vol 144, no. 3, pp. 156-161, 1997.

    [19] K. Kalli and D. A. Jackson, “A feasibility study into the use of Raman and fluorescence spectroscopy for pollution monitoring of volatile organic compounds in ground water,” Submitted to Dr. Charles Shelton, Environmental Research Dept. Shell Research Ltd., 1996.

    [20] D. Sun, K. Kalli, R. May, and R. Claus, “Optical fiber devices, sensors and systems”, Final report submitted to Henry Whitesel, Code 2753, David Taylor Research Center, February, 1993.

    [21] T. Kuzniz, D. Halot, A. G. Mignani, L. Ciaccheri, K. Kalli, M. Tur, A. Othonos, C. Christofides, and D. A. Jackson, “Instrumentation for the monitoring of toxic pollutants in water resources by means of neural network analysis of absorption and fluorescence spectra,” Sens. & Act. B, vol. 121, no. 3, pp. 231-237, 2007.

    [22] K. Kalli, A. Othonos, and C. Christofides, “Hydrogen gas detection via photothermal deflection measurements,” Rev. Sci. Inst., vol. 68, no. 9, pp. 3544-3552, 1997.

    [23] K. Kalli, A. Othonos, C. Christofides, A. Spetz, and I. Lundstrom, “Photomodulated thermoreflectance detection of hydrogen gas using optically thin palladium film on silicon oxide,” Rev. Sci. Inst., vol. 69, no. 3, pp. 1505-1511, 1998.

    [24] C. Christofides, A. Othonos, and K. Kalli, “Non destructive photothermal radiometric measurements of defects and metallic contaminating impurities on silicon wafers”, in Crystalline Defects and Contamination III, Electrochemical Society Proc., vol. 2001-29, pp. 153-165, 2001.

    [25] K. Kalli, A. Othonos, C. Christofides, and F. Tardif, “Non-destructive evaluation of metal contaminated silicon wafers using radiometric measurements,” J. Appl.Phys., vol. 86, no. 6, pp. 3064-3067, 1999.

    [26] K. Kalli, A. Othonos, and C. Christofides, “Characterization of reflectivity inversion, α and β phase transitions and nanostructure formation in hydrogen activated thin Pd films on silicon based substrates,” J. Appl. Phys., vol. 91, no. 6, pp. 3829-3840, 2002.

    [27] C. Christofides, K. Kalli, and A. Othonos, “Optical response of thin supported palladium films to hydrogen: non-destructive testing for hydrogen detection,” Plat. Metals Rev., vol. 43, no. 4, pp. 155-157, 1999.

    [28] K. Kalli, A. Othonos, C. Christofides, A. Spetz, and I. Lundstrom, “Temperature-induced reflectivity changes and activation of hydrogen sensitive optically thin palladium metal films on silicon oxide,” Rev. Sci. Inst., vol. 69, no. 9, pp. 3331-3338, 1998.

    [29] A. Othonos, K. Kalli, and D. P. Tsai, “Optically thin palladium films on silicon based substrates and nanostructure formation: effects of hydrogen,” Appl. Surf. Sci., vol. 161, no. 1-2, pp. 54-56, 2000.

    [30] A. G. Simpson, K. Kalli, K. Zhou, L. Zhang, and I. Bennion, “Formation of type IA fiber Bragg gratings in germanosilicate optical fiber,” Electron. Lett., vol. 40, no. 3, pp. 127-133, 2004.

    [31] A. G. Simpson, K. Kalli, K. Zhou, L. Zhang, and I. Bennion, “An idealised method for the fabrication of temperature invariant IA-I strain sensors,” presented at Optical Fibre Sensors Conference OFS16, Nara, Japan, 2003.

    [32] A. G. Simpson, K. Kalli, K. Zhou, L. Zhang, and I. Bennion, “Blank beam fabrication of regenerated type IA gratings,” Meas. Sci. Technol., vol. 15, no. 8, pp. 1665-1669, 2004.

    [33] K. Kalli, G. Simpson, K. Zhou, L. Zhang, and I. Bennion, “Tailoring the temperature and strain coefficients of type I and type IA dual grating sensors - the impact of hydrogenation conditions,” Meas. Sci. Technol., vol. 17, no. 5, pp. 949-954, 2006.

    [34] A. Faustov, P. Saffari, C.Koutsides, A. Gusarov, M. Wuilpart, P. Mégret, K. Kalli, and L. Zhang, “Highly radiation sensitive type IA FBGs for dosimetry applications,” presented at European Conference on Radiation Effects on Component and Systems, Sevilla, Spain, September 19-23, 2011.

    [35] K. Kalli, G. Simpson, K. Zhou, L. Zhang, D. Birkin, T. Ellingham, and I. Bennion, “Spectral modification of type IA fiber Bragg gratings by high power near infra-red lasers,” Meas. Sci. Technol., vol. 17, no. 5, pp. 968-974, 2006.

    [36] G. N. Smith, K. Kalli, and K. Sugden “Advances in femtosecond micromachining and inscription of micro and nano photonic devices,” in Frontiers in Guided Wave Optics and Optoelectronics, Bishnu Pal. Ed. InTech, Croatia, 2010, pp. 674.

    [37] G. N. Smith, K. Kalli, I. Bennion, and K. Sugden, “Demonstration of inscription and ablation of phase masks for the production of 1st, 2nd, and 3rd order FBG gratings using a femtosecond laser,” in SPIE, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics II, vol. 7205, pp 720511, 2009.

    [38] T. Geernaert, K. Kalli, C. Koutsides, M. Komodromos, T. Nasilowski, W. Urbanczyk, J. Wojcik, F. Berghmans, and H. Thienpont, “Point-by-point fiber Bragg grating inscription in free-standing step-index and photonic crystal fibers using near-IR femtosecond laser,” Opt. Lett., vol. 35, no. 10, pp. 1647-1649, 2010.

    [39] K. T. O'Mahoney, A. S. Main, D. J. Webb, A. Martinez, and D. A. Flavin, “Implications of high power losses in IR femtosecond laser inscribed fiber Bragg gratings,” in SPIE, Reliability of Optical Fiber Components, Devices, Systems, and Networks III, vol. 6193, pp. 61930Z, 2006.

    [40] N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Exp., vol. 17, no. 8, pp. 6082-6095, 2009.

    [41] K. Kalli, T. Allsop, C. Koutsides, E. Davies, D. Webb, and L. Zhang, “Femtosecond laser inscription of fiber Bragg gratings with low insertion loss and minor polarization dependence,” presented at Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BGPP), Karlsruhe, Gernamy, 2010 (paper: BMA3).

    [42] T. Erdogan, “Cladding-mode resonances in shortand long- period fiber grating filters,” J. Opt. Soc. Am. A, vol. 14, no. 8, pp. 1760-1773, 1997.

    [43] B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibers,” Elec.. Lett., vol. 30, no. 19, pp. 1620-1622, 1994.

    [44] N. G.. R. Broderick and C. M. De Sterke, “Theory of grating superstructures,” Phys. Rev. E, vol. 55, no. 3, pp. 3634-3646, 1997.

    [45] H. Rao, R. Scarmozzino, and R. M. Osgood, “A bidirectional beam propagation method for multiple dielectric interfaces,” IEEE Phot. Tech. Lett., vol. 11, no. 7, pp. 830-832, 1999.

    [46] C. Koutsides, K. Kalli, D. J. Webb, and L. Zhang, “Characterizing femtosecond laser inscribed Bragg grating spectra,” Opt. Exp., vol. 19, no. 1, pp. 342-352, 2011.

    [47] T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fiber by a femtosecond laser as directional bend sensors,” Opt. Comm., vol. 281, no. 20, pp. 5092-5096, 2008.

    [48] H. Dobb, K. Kalli, and D. J. Webb, “Measured sensitivity of long period gratings in photonic crystal fiber,” Opt. Comm., vol. 260, no. 1, pp. 184-191, 2006.

    [49] H. Dobb, K. Kalli, and D. J. Webb, “Temperature insensitive long period grating sensors in photonic crystal fiber,” Elec. Lett., vol. 40, no. 11, pp. 657-658, 2004.

    [50] J. S. Petrovic, D. J. Webb, V. Mezentsev, H. Dobb, K. Kalli, and I. Bennion, “Nondestructive index profiling of long period gratings in photonic crystal fibers,” Opt. Quant. Elec., vol. 38, no. 9-11, pp. 913-920, 2006.

    [51] J. S. Petrovic, V. Mezentsev, H. Dobb, D. J. Webb, K. Kalli, and I. Bennion, “Multiple period resonances in long period gratings in photonic crystal fibers,” Opt. Quant. Elec., vol. 38, no. 1-3, pp. 209-216, 2006.

    [52] J. S. Petrovic, H. Dobb, V. Mezentsev, K. Kalli, D. J. Webb, and I. Bennion, “Sensitivity of LPGs in PCFs fabricated by an electric arc to temperature, strain, and external refractive index,” IEEE J. Lightwave Tech., vol. 25, no. 5, pp. 1306-1312, 2007.

    [53] W. Xin, C. Shuying, D. Zhigang, W. Xiaoyang, S. Changhai, and C. Jianping, “Experimental study of some key issues on fiber-optic interferometric sensors detecting weak magnetic field,” IEEE Sens. J., vol. 8, no. 7, pp. 1173-1179, 2008.

    Kyriacos KALLI. Research at the University of Kent and Subsequent Research Activities[J]. Photonic Sensors, 2011, 1(4): 362
    Download Citation