• Laser & Optoelectronics Progress
  • Vol. 58, Issue 7, 0727003 (2021)
Fan Yang, Ablimit Arapat, and Abliz Ahmad*
Author Affiliations
  • School of Physics and Electronic Engineering, Xinjiang Normal University, Urumchi , Xinjiang 830054, China
  • show less
    DOI: 10.3788/LOP202158.0727003 Cite this Article Set citation alerts
    Fan Yang, Ablimit Arapat, Abliz Ahmad. Influences of Dzyaloshinskii-Moriya Interaction and Inhomogeneous Magnetic Field on Entanglement of Spin System in Non-Markov Environment[J]. Laser & Optoelectronics Progress, 2021, 58(7): 0727003 Copy Citation Text show less
    References

    [1] Valentini A. Subquantum information and computation[J]. Pramana, 59, 269-277(2002).

    [2] Bennett C H, Brassard G, Crépeau C et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 70, 1895-1899(1993).

    [3] Shor P W. Proceedings of the 35th Annual Symposium on Foundations of Computer Science[J]. Journal of Modern Physics, 22, 365747(1994).

    [4] Zhang G F, Li S S. Thermal entanglement in a two-qubit Heisenberg XXZ spin chain under an inhomogeneous magnetic field[J]. Physical Review A, 72, 034302(2005).

    [5] Xi X Q, Liu W M. An important property of entanglement: pairwise entanglement that can only be transferred by an entangled pair[J]. Chinese Physics, 16, 1858-1862(2007).

    [6] Shan C J, Liu J B, Chen T et al. Entanglement for two-qubit extended Werner-like states: effect of non-Markovian environments[J]. Communications in Theoretical Physics, 54, 427-432(2010).

    [7] Zhang G F. Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski-Moriya anisotropic antisymmetric interaction[J]. Physical Review A, 75, 034304(2007).

    [8] Mu Q X, Yang J, Luo D D et al. Influences of anisotropy and spin coupling parameters on quantum entanglement of Heisenberg XYZ chain[J]. Laser & Optoelectronics Progress, 56, 242701(2019).

    [9] Lu F. Controllable quantum entanglement based on cavity structure[J]. Laser & Optoelectronics Progress, 56, 042701(2019).

    [10] Xu Y L. Quantum correlation and quantum phase transition of spin systems[D], 7-14(2015).

    [11] Jiang C L. Quantum entanglement and information process in cavity QED and Heisenberg spin system[D], 38-45(2009).

    [12] Huang L Y. Quantum thermal entanglement and the entanglement teleportation in the Heiseberg model[D], 13-15(2008).

    [13] Huang A J, Wang D, Wang J M et al. Exploring entropic uncertainty relation in the Heisenberg XX model with inhomogeneous magnetic field[J]. Quantum Information Processing, 16, 1-11(2017).

    [14] Kane B E. A silicon-based nuclear spin quantum computer[J]. Nature, 393, 133-137(1998).

    [15] Vrijen R, Yablonovitch E, Wang K et al. Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures[J]. Physical Review A, 62, 012306(2000).

    [16] Burkard G, Loss D, DiVincenzo D P. Coupled quantum dots as quantum gates[J]. Physical Review B, 59, 2070-2078(1999).

    [17] Dzyaloshinsky I. A thermodynamic theory of "weak" ferromagnetism of antiferromagnetics[J]. Journal of Physics and Chemistry of Solids, 4, 241-255(1958).

    [18] Moriya T. New mechanism of anisotropic superexchange interaction[J]. Physical Review Letters, 4, 228-230(1960).

    [19] Yu P F, Cai J G, Liu J M et al. Effects of phase decoherence on the entanglement of a two-qubit anisotropic Heisenberg XYZ chain with an in-plane magnetic field[J]. The European Physical Journal D, 44, 151-158(2007).

    [20] Li D C, Cao Z L. Entanglement in the anisotropic Heisenberg XYZ model with different Dzyaloshinskii-Moriya interaction and inhomogeneous magnetic field[J]. The European Physical Journal D, 50, 207-214(2008).

    [21] Xu X B, Liu J M, Yu P F. Entanglement of a two-qubit anisotropic Heisenberg XYZ chain in nonuniform magnetic fields with intrinsic decoherence[J]. Chinese Physics, 17, 456-461(2008).

    [22] Zhang G F. Effects of anisotropy on optimal dense coding[J]. Physica Scripta, 79, 015001(2009).

    [23] Jiang C L, Liu X J, Liu M W et al. Properties and coherence-controlling of entanglement of a two-qubit Heisenberg XY chain with intrinsic decoherence[J]. Acta Physica Sinica, 61, 170302(2012).

    [24] Qin M, Bai Z, Li B Y et al. Thermal entanglement and teleportation in a two-qubit Heisenberg XXZ chain with different Dzyaloshinskii-Moriya interactions[J]. Optics Communications, 284, 3149-3153(2011).

    [25] Abliz A, Gao H J, Xie X C et al. Entanglement control in an anisotropic two-qubit Heisenberg XYZ model with external magnetic fields[J]. Physical Review A, 74, 052105(2006).

    [26] Derzhko O, Richter J. Thermodynamic properties of spin-12 transverse XY chains with Dzyaloshinskii-Moriya interaction: exact solution for correlated Lorentzian disorder[J]. Physical Review B, 59, 100-103(1999).

    [27] Li Y C, Li S S. Retraction: quantum critical phenomena in the XY spin chain with the Dzyaloshinski-Moriya interaction[J]. Physical Review A, 80, 019903(2009).

    [28] Luo D D, Mu X Q, Huang Y X. Effect of Dzyaloshinskii-Moriya interaction on the thermal entanglement of Heisenberg XYZ chain under external magnetic field[J]. Laser & Optoelectronics Progress, 58, 012701(2021).

    [29] Hu J, Fang J X, Qian L et al. Thermal entanglement of Ising model with Dzyaloshinskii-Moriya interaction in an inhomogeneous magnetic field[J]. Chinese Journal of Quantum Electronics, 28, 032906(2011).

    [30] Mahmoudi M. The effects of Dzyaloshinskii-Moriya interaction on entanglement dynamics of a spin chain in a non-Markovian regime[J]. Physica A: Statistical Mechanics and Its Applications, 545, 123707(2020).

    [31] Martin T, Giresse T A. Entanglement dynamics of a two-qubit XYZ spin chain under both Dzyaloshinskii-Moriya interaction and time-dependent anisotropic magnetic field[J]. International Journal of Theoretical Physics, 59, 2232-2248(2020).

    [32] Yu T, Diósi L, Gisin N et al. Non-Markovian quantum-state diffusion: perturbation approach[J]. Physical Review A, 60, 91-103(1999).

    [33] Diósi L, Gisin N, Strunz W T. Non-Markovian quantum state diffusion[J]. Physical Review A, 58, 1699-1712(1998).

    [34] Calzetta E A, Hu B L B[M]. Nonequilibrium quantum field theory(2008).

    [35] Breuer H P, Petruccione F. Decoherence[M]. The theory of open quantum systems, 219-280(2007).

    [36] Zhao X Y. Stochastic theory of non-markovian open quantum system[EB/OL]. https://ui.adsabs.harvard.edu/abs/2014PhDT........57Z/abstract

    [37] Strunz W T. The Brownian motion stochastic Schrödinger equation[J]. Chemical Physics, 268, 237-248(2001).

    [38] Chiu T Y. Non-Markovian master equation for interacting qubits coupled to a bosonic bath: analytic form and asymptotic approximation[J]. Quantum Physics, 3, 1983-1989(2015).

    [39] Eisert J, Wilkens M. Catalysis of entanglement manipulation for mixed states[J]. Physical Review Letters, 85, 437-440(2000).

    [40] Chang K L[M]. Mathematical foundation of quantum mechanics(1955).

    [41] Wootters W K. Entanglement of formation of an arbitrary state of two qubits[J]. Physical Review Letters, 80, 2245-2248(1998).

    [42] Vedral V, Plenio M B, Rippin M A et al. Quantifying entanglement[J]. Physical Review Letters, 78, 2275-2278(1997).

    Fan Yang, Ablimit Arapat, Abliz Ahmad. Influences of Dzyaloshinskii-Moriya Interaction and Inhomogeneous Magnetic Field on Entanglement of Spin System in Non-Markov Environment[J]. Laser & Optoelectronics Progress, 2021, 58(7): 0727003
    Download Citation