• Advanced Photonics
  • Vol. 4, Issue 5, 056004 (2022)
Pierre Didier1、2、†,*, Hamza Dely3, Thomas Bonazzi3, Olivier Spitz1、4, Elie Awwad1, Étienne Rodriguez3, Angela Vasanelli3, Carlo Sirtori3, and Frédéric Grillot1、5
Author Affiliations
  • 1Télécom Paris, Institut Polytechnique de Paris, LTCI, Palaiseau, France
  • 2mirSense, Centre d’integration NanoInnov, Palaiseau France
  • 3ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Laboratoire de Physique de l’École Normale Supérieure, Paris, France
  • 4University of Central Florida, CREOL, College of Optics and Photonics, Orlando, Florida, United States
  • 5University of New Mexico, Center for High Technology Materials, Albuquerque, New Mexico, United States
  • show less
    DOI: 10.1117/1.AP.4.5.056004 Cite this Article Set citation alerts
    Pierre Didier, Hamza Dely, Thomas Bonazzi, Olivier Spitz, Elie Awwad, Étienne Rodriguez, Angela Vasanelli, Carlo Sirtori, Frédéric Grillot. High-capacity free-space optical link in the midinfrared thermal atmospheric windows using unipolar quantum devices[J]. Advanced Photonics, 2022, 4(5): 056004 Copy Citation Text show less
    References

    [1] M. Montesinos-Ballester et al. On-chip mid-infrared supercontinuum generation from 3 to 13  μm wavelength. ACS Photonics, 7, 3423-3429(2020). https://doi.org/10.1021/acsphotonics.0c01232

    [2] B. Cole et al. Compact and efficient mid-IR OPO source pumped by a passively Q-switched Tm: YAP laser. Opt. Lett., 43, 1099-1102(2018).

    [3] N. Sobolev, V. V. Sokovikov. CO2 lasers. Sov. Phys. Usp., 10, 153(1967). https://doi.org/10.1070/PU1967v010n02ABEH005861

    [4] M. Tacke. New developments and applications of tunable IR lead salt lasers. Infrared Phys. Technol., 36, 447-463(1995).

    [5] L. Zhang et al. Applications of absorption spectroscopy using quantum cascade lasers. Appl. Spectrosc., 68, 1095-1107(2014).

    [6] T. H. Risby, F. K. Tittel. Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis. Opt. Eng., 49, 111123(2010).

    [7] P. Corrigan et al. Quantum cascade lasers and the Kruse model in free space optical communication. Opt. Express, 17, 4355-4359(2009).

    [8] J. J. Liu et al. Mid and long-wave infrared free-space optical communication. Proc. SPIE, 11133, 1113302(2019).

    [9] J. Faist et al. Quantum cascade laser. Science, 264, 553-556(1994).

    [10] R. Ferreira, G. Bastard. Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum-well structures. Phys. Rev. B, 40, 1074-1086(1989).

    [11] B. Meng, Q. J. Wang. Theoretical investigation of injection-locked high modulation bandwidth quantum cascade lasers. Opt. Express, 20, 1450-1464(2012).

    [12] A. Calvar et al. High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line. Appl. Phys. Lett., 102, 181114(2013).

    [13] B. Hinkov et al. RF-modulation of mid-infrared distributed feedback quantum cascade lasers. Opt. Express, 24, 3294-3312(2016).

    [14] A. Mottaghizadeh et al. Ultra-fast modulation of mid infrared buried heterostructure quantum cascade lasers. 42nd Int. Conf. Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1-2(2017).

    [15] Y. Zhou et al. High-speed operation of single-mode tunable quantum cascade laser based on ultra-short resonant cavity. AIP Adv., 11, 015325(2021).

    [16] F. Kapsalidis et al. Mid-infrared quantum cascade laser frequency combs with a microstrip-like line waveguide geometry. Appl. Phys. Lett., 118, 071101(2021).

    [17] P. Grant et al. Room-temperature heterodyne detection up to 110 GHz with a quantum-well infrared photodetector. IEEE Photonics Technol. Lett., 18, 2218-2220(2006).

    [18] M. Hakl et al. Ultrafast quantum-well photodetectors operating at 10  μm with a flat frequency response up to 70 GHz at room temperature. ACS Photonics, 8, 464-471(2021). https://doi.org/10.1021/acsphotonics.0c01299

    [19] G. Quinchard et al. High speed, antenna-enhanced 10.3  μm quantum cascade detector. Appl. Phys. Lett., 120, 091108(2022). https://doi.org/10.1063/5.0078861

    [20] R. Martini et al. High-speed digital data transmission using mid-infrared quantum cascade lasers. Electron. Lett., 37, 1290-1292(2001).

    [21] X. Pang et al. Up to 6 Gbps mid-infrared free-space transmission with a directly modulated quantum cascade laser. Eur. Conf. Opt. Commun. (ECOC), 1-4(2021).

    [22] C. Liu et al. Free-space communication based on quantum cascade laser. J. Semicond., 36, 094009(2015).

    [23] X. Pang et al. Free-space communications enabled by quantum cascade lasers. Phys. Status Solidi A, 218, 2000407(2021).

    [24] J. Mikołajczyk. A comparison study of data link with medium-wavelength infrared pulsed and CW quantum cascade lasers. Photonics, 8, 203(2021).

    [25] O. Spitz et al. Multi-Gb/s free-space communication with energy-efficient room-temperature quantum cascade laser emitting at 8.1  μm, 1-2(2021). https://doi.org/10.1109/IPC48725.2021.9592899

    [26] O. Spitz et al. Free-space communication with directly modulated mid-infrared quantum cascade devices. IEEE J. Sel. Top. Quantum Electron., 28, 1200109(2022).

    [27] B. Chen, Y. Chen, Z. Deng. Recent advances in high speed photodetectors for eSWIR/MWIR/LWIR applications. Photonics, 8, 14(2021).

    [28] X. Pang et al. 11 Gb/s LWIR FSO transmission at 9.6  μm using a directly-modulated quantum cascade laser and an uncooled quantum cascade detector, 1-3(2022).

    [29] Y. Yao et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett., 14, 6526-6532(2014).

    [30] B. Zeng et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light: Sci. Appl., 7, 51(2018).

    [31] G. Liang et al. Mid-infrared photonics and optoelectronics in 2D materials. Mater. Today, 51, 294-316(2021).

    [32] M. Montesinos-Ballester et al. Mid-infrared integrated electro-optic modulator operating up to 225 MHz between 6.4 and 10.7 m wavelength. ACS Photonics, 9, 249-255(2022).

    [33] R. Becker, R. Rediker, T. Lind. Wide-bandwidth guided-wave electro-optic intensity modulator at λ=3.39  μm. Appl. Phys. Lett., 46, 809-811(1985). https://doi.org/10.1063/1.95891

    [34] S. Pirotta et al. Fast amplitude modulation up to 1.5 GHz of mid-IR free-space beams at room-temperature. Nat. Commun., 12, 799(2021).

    [35] B. Crockett et al. Optical signal denoising through temporal passive amplification. Optica, 9, 130-138(2022).

    [36] H. Dely et al. 10 Gbit s–1 free space data transmission at 9  μm wavelength with unipolar quantum optoelectronics. Laser Photonics Rev., 16, 2100414(2022). https://doi.org/10.1002/lpor.202100414

    [37] F. Capasso, C. Sirtori, A. Y. Cho. Coupled quantum well semiconductors with giant electric field tunable nonlinear optical properties in the infrared. IEEE J. Quantum Electron., 30, 1313-1326(1994).

    [38] M. Vorontsov et al. Deep turbulence effects compensation experiments with a cascaded adaptive optics system using a 3.63 m telescope. Appl. Opt., 48, A47-A57(2009).

    [39] K. Zou et al. Demonstration of free-space 300-Gbit/s QPSK communications using both wavelength-and mode-division-multiplexing in the mid-IR, 1-3(2021).

    [40] Q. Hao et al. Mid-infrared transmitter and receiver modules for free-space optical communication. Appl. Opt., 56, 2260-2264(2017).

    [41] J. Hillbrand et al. High-speed quantum cascade detector characterized with a mid-infrared femtosecond oscillator. Opt. Express, 29, 5774-5781(2021).

    [42] D. Palaferri et al. Room-temperature nine-μm-wavelength photodetectors and GHz-frequency heterodyne receivers. Nature, 556, 85-88(2018). https://doi.org/10.1038/nature25790

    [43] H. Liu et al. High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique. IEEE J. Quantum Electron., 32, 1024-1028(1996).

    [44] T. Gensty. Intensity noise properties of quantum cascade lasers. Opt. Express, 13, 2032-2039(2005).

    [45] O. Ozolins et al. 100 Gbaud PAM4 link without EDFA and post-equalization for optical interconnects, 1-4(2019).

    [46] J. G. Proakis, M. Salehi. Digital Communications, 4(2001).

    [47] I. I. Kim, B. McArthur, E. J. Korevaar. Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. Proc. SPIE, 4214, 26-37(2001).

    [48] A. Trichili et al. Roadmap to free space optics. J. Opt. Soc. Am. B, 37, A184-A201(2020).

    [49] Y. Ren et al. Adaptive-optics-based simultaneous pre-and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link. Optica, 1, 376-382(2014).

    [50] O. Spitz et al. Private communication with quantum cascade laser photonic chaos. Nat. Commun., 12, 3327(2021).

    [51] H. Kaushal, V. Jain, S. Kar. Free Space Optical Communication(2017).

    [52] A. Ghasemi, A. Abedi, F. Ghasemi. Terrestrial Mobile Radio Propagation, 215-287(2012).

    [53] M. A. Esmail, H. Fathallah, M.-S. Alouini. An experimental study of FSO link performance in desert environment. IEEE Commun. Lett., 20, 1888-1891(2016).

    Pierre Didier, Hamza Dely, Thomas Bonazzi, Olivier Spitz, Elie Awwad, Étienne Rodriguez, Angela Vasanelli, Carlo Sirtori, Frédéric Grillot. High-capacity free-space optical link in the midinfrared thermal atmospheric windows using unipolar quantum devices[J]. Advanced Photonics, 2022, 4(5): 056004
    Download Citation