• Journal of Innovative Optical Health Sciences
  • Vol. 7, Issue 2, 1350041 (2014)
David Lloyd1、*, Catrin F. Williams1, K. Vijayalakshmi2, M. Kombrabail2, Nick White1, Anthony J. Hayes1, Miguel A. Aon3, and G. Krishnamoorthy2
Author Affiliations
  • 1Biosciences and School of Optometry and Vision Sciences Cardiff University, Cathays Park and Maindy Road, Cardiff, Wales, UK
  • 2Department of Chemical Sciences, Tata Institute of Fundamental Research Homi Bhabha Road, Mumbai 400 005, India
  • 3The Johns Hopkins University, Institute of Molecular Cardiobiology,720 Rutland Av., 1059 Ross Bldg., Baltimore MD, USA
  • show less
    DOI: 10.1142/s1793545813500417 Cite this Article
    David Lloyd, Catrin F. Williams, K. Vijayalakshmi, M. Kombrabail, Nick White, Anthony J. Hayes, Miguel A. Aon, G. Krishnamoorthy. Intracellular oxygen: Similar results from two methods of measurement using phosphorescent nanoparticles[J]. Journal of Innovative Optical Health Sciences, 2014, 7(2): 1350041 Copy Citation Text show less
    References

    [1] J. M. Vanderkooi, M. Erecinska I. A. Silver, "Oxygen in mammalian tissue: Methods of measurement and affinities of various reactions," Am. J. Physiol. 260, C1131–C1150 (1981).

    [2] B. A. Wittenberg, J. B. Wittenberg J. B. "Transport of oxygen in muscle," Ann. Rev. Physiol. 51, 857–878 (1989).

    [3] D. B. Cater, S. Geraltini, F. Marina, I. Silver, "Changes in oxygen tension in brain and somatic tissues induced by vasodilator and vasoconstrictor substances," Proc. R. Soc. B 155, 136–157 (1961).

    [4] M. Brezis S. Rosen P. Silva F. H. Epstein, "Renal ischemia in a new perspective," Kidney Int. 26, 375– 383 (1984).

    [5] G. Birol, S. Wang, E. Budzynski, N. D. Wangsa- Wirawan, R. A. Linsenmeier, "Oxygen distribution and consumption in the macaque retina," Am. J. Physiol. Heart Circ. Physiol. 293, H1696–H1704 (2007).

    [6] G. He, R. A. Shankar, M. Chzhan, A. Samouilov, P. Kuppusamy, J. L. Zweier, "No-invasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral imaging," Proc. Nat. Acad. Sci. USA 96, 4586–4591 (1999).

    [7] D. Lloyd, S. Cortassa, B. O'Rourke, M. A. Aon, "What yeast and cardiomyocytes share: Ultradian oscillatory redox mechanisms of cellular coherence and survival," Intgr. Biol.(Camb) 4, 65–74 (2012).

    [8] M. A. Aon, S. Cortassa, B. O'Rourke, "Redoxoptimized ROS balance: A unifying hypothesis," Biochem. Biophys. Acta 1797, 865–877 (2010).

    [9] C.Gitler,A.Danon,Eds., CellularImplications ofRedox Signalling, Imperial College Press, London (2003).

    [10] F. Schindler, Oxygen kinetics in the cytochrome oxygen reaction, Ph.D. Thesis, University of Pennsylvania, University Microfilms Inc., Ann Arbor, MI (1964).

    [11] B. Chance, S. Noka, W. Warren, G. Yurtsever, "Mitochondrial NADH as the bellwether of tissue O2 delivery," Adv. Exp. Biol. Med. 566, 231–262 (2005).

    [12] D. P. Jones, H. S. Mason, "Gradients of O2 in hepatocytes," J. Biol. Chem. 253, 4874–4880 (1978).

    [13] D. Lloyd, H. Mellor, J. L. Williams, "Oxygen affi- nity of the respiratory chain of Acanthamoeba castellanii", Biochem. J. 214, 47–51 (1983).

    [14] G. L. Semenza, G. L. Wang, "A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional acxtivation," Mol. Cell. Biol. 12, 5447–5454 (1992).

    [15] C. T. Taylor, "Mitochondria and cellular oxygen sensing in the HIF pathway," Biochem. J. 409, 19– 26 (2008).

    [16] D. Lloyd, "Noninvasive methods for the investigation of organisms at low oxygen levels," Adv. Appl. Microbiol. 51, 155–183 (2002).

    [17] D'Mello, S. Hill, R. K. Poole, "The oxygen affinity of cytochrome bo' in Escherichia coli determined by the deoxygenation of oxyleghaemoglobin and oxymyoglobin: Km values for oxygen are in the submicromolar range," J. Bacteriol. 177, 867–870 (1995).

    [18] K. M. Lemar, M. A. Aon, S. Cortassa, B. O'Rourke, C. T. Muller, D. Lloyd "Diallyl disulphide depletes glutathione in Candida albicans: Oxidative-stress mediated cell death studied by 2-photon microscopy," Yeast 24, 695–706 (2007).

    [19] M. P. Murphy, "How mitochondria produce reactive oxygen species," Biochem. J. 417, 1–13 (2009).

    [20] S. A. Vinogradov, W. I. W. T. Jenkins, S. M. Evans, C. Koch, D. F. Wilson, "Non invasive imaging of the distribution oxygen in tissue in vivo using near infrared phosphors," Biophys. J. 70, 1609–1617 (1996).

    [21] A. Devor, S. Sakadzic, S. A. Saisan, M. A. Yaseen, E. Roussakis, V. J. Srinivasan, S. A. Vinogradov, B. R. Buxton, A. M. Dale, D. A. Boas, "`Overshoot' of O2 is required to maintain baseline tissue oxygenation at locations distal to blood vessels," J. Neurosci. 31, 13676–13681 (2011).

    [22] K. Suhling, P. M. W. French, D. Phillips, "Time resolved fluorescence microscopy," Photochem. Photobiol. 4, 13–22 (2004).

    [23] W. M. Vaughan, G. Weber, "Oxygen quenching of pyrene butyric acid fluorescence in water," Biochemistry 9, 464–473 (1970).

    [24] D. H. Benson, J. A. Knopp, T. S. Longmuir, "Intracellular oxygen measurements of mouse liver cells using quantitative fluorescence microscopy," Biochem. Biophys. Acta 591, 187–197 (1980).

    [25] G. T. Podgorski, I. S. Longmuir, J. A. Knopp, D. M. Benson, "Use of an encapsulated fluorescent probe to measure intracellular pO2," J. Cell Physiol. 107, 329–334 (1981).

    [26] M. Vanderkooi, G. Maniara, T. J. Green, D. F. Wilson, "An optical method for the measurement of dioxygen concentration based of phosphorescence," J. Biol. Chem. 262, 3476–3482 (1987).

    [27] J. R. Bacon, J. N. Demas, "Determination of oxygen concentrations by luminescence quenching of a polymer immobilized transition-metal complex," Anal. Chem. 59, 2780–2785 (1987).

    [28] D. Elson et al., "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. 3, 795–801 (2004).

    [29] B. A. DeGraaf, J. N. Demas, "Luminescence-based oxygen sensors" Reviews in Fluorescence, C. Geddes and J. R. Lakowicz, Eds., Vol. 2, pp. 125–151, Springer, New York (2005).

    [30] A. J. Amoroso, M. P. Coogan, J. E. Dunne, V. Fernandez- Moreira, J. B. Hess, A. J. Hayes, D. Lloyd C. O. M. Millet, S. J. Pope, C. Williams, "Rhenium fac-tricarbonyl bisimine complexes: Biologically useful flurochromes for cell imaging application," Chem. Commun. 29 3066–3068 (2007).

    [31] A. J. Amoroso, R. J. Arthur, M. P. Coogan, J. B. Court, V. Fernandez-Moreira, A. J. Hayes, D. Lloyd C. Millet S. J. A. Pope, "3-Chloromethyl pyridyl bipyridine fac-tricarbonyl rhenium: A thiol-reactive luminophore for fluorescence microscopy accumulates in mitochondria," New J. Chem. 32, 1097– 1102 (2010).

    [32] M. P. Coogan, J. B. Court, V. L. Gray, A. J. Hayes, S. H. Lloyd, C. O. Millet, S. J. Pope, D. Lloyd "Probing intracellular oxygen by quenched phosphorescence lifetimes of nanoparticles containing polyacrylamide-embedded [Ru(dpp(SO3Na2 T 2]Cl2," Photochem. Photobiol. Sci. 9, 103–109 (2010).

    [33] V. Fernandez-Moreira, F. L. Thorp-Greenwood, A. J. Amoroso, J. Cable, J. B. Court, V. Gray A. J. Hayes, R. J. Jenkins, B. M. Kariuki, D. Lloyd, C. O. Millet, C. F. Williams, M. P. Coogan, "Uptake and localisation of rhenium fac-tricarbonyl polypyridyls in fluorescent cell imaging-experiments," Org. Biomol. Chem. 8, 3888–3901 (2010).

    [34] F. L. Thorp-Greenwood, V. Fernandez-Moreira, C. O. Millet, C. F. Williams, J. Cable, J. B. Court, A. J. Hayes, D. Lloyd, M. P. Coogan, "A `Sleeping Trojan Horse' which transports metals into cells, localises in nucleoli, and has potential for biomodal fluorescence/ PET imaging," Chem. Commun. 47, 3096– 3098 (2011).

    [35] R. G. Balasingham, F. L. Thorp-Greenwood, C. F. Williams, M. P. Coogan, S. J. Pope, "Biologicallycompatible, phosphorescent dimetallic rhenium complexes linked through functionalized alkyl chains: Synthesis, spectroscopic properties, and applications in imaging microscopy," Inorg. Chem. 51, 1419–1426 (2012).

    [36] R. J. Watts, G. A. Crosby, "Spectroscopic characterization of complexes of ruthenium (II) and iridium (II) with 4,4 diphenyl 2,2 bipyridine and 4,7- diphenyl-1,10-pehenanthroline," J. Am. Chem. Soc. 93, 3184–3188 (1971).

    [37] F. N. Castellano, J. R. Lakowicz, "A water-soluble luminescence oxygen sensor," Photochem. Photobiol. 67, 179–183 (1998).

    [38] A. Draaijer, A. Sanders, H. C. Yerritsen, "Fluorescence lifetime imaging, a new tool in confocal microscopy," Handbook of Biological Confocal Microscopy, 2nd Edition, J. B. Pawley Ed., pp. 491– 505, Plenum, New York (1995).

    [39] A. Periasamy, P. Woodnicki, X. F. Wang, S. Kwon, G. W. Gordon, B. Herman, "A Time-resolved fluorescence lifetime imaging microscopy using a picosecond tuneable dye laser system," Rev. Sci. Instrum. 67, 3722–3731 (1996).

    [40] K. J. Morris, M. S. Roach, W. Xu, J. N. Demas, B. A. DeGraff, "Luminescence lifetime standards for the nanosecond to microsecond range and oxygen quenching of Ru(II)," Anal. Chem. 79, 9310–9314 (2007).

    [41] J. Zhong, M. Sakaki, H. Okada, E. T. Ahrens, "In vivo intracellular oxygen dynamics in murine brain glioma and immunotherapeutic response of cytotoxic T cells observed by Fluorine-19 magnetic resonance imaging," Plos One 8(5) e59479 (2013).

    [42] S. W. Botchway, M. Charnley, J. W. Haycock, A. W. Parker, D. L. Rochester, J. A. Weinstein, J. A. Williams, "Time-resolved and two-photon emission imaging microscopy of live cells with inert platinum complexes," Proc. Natl Acad. Sci. USA, 105, 16071– 16076 (2008).

    [43] H. A. Clark, M. Hoyer, M. A. Philbert, R. Kopelman, "Optochemical nanosensors for chemical analysis in living cells," Anal. Chem. 71, 4831–4836 (1999).

    [44] S. M. Buck, Y. E. Koo, E. Park, H. Xu, M.A. Philbert, M. A. Basuel, R. Kopelman, "Optochemical nanosensor PEBBLEs: Photonic explorers for bioanalysis with biologically localized embedding," Curr. Opin. Chem. Biol. 8, 540–546 (1999).

    [45] D. Lloyd,M. P. Coogan, S. J. A. Pope, "Novel metalbased luminophores for biological imaging," Reviews in Fluorescence 2010, C. D. Geddes, Ed., pp. 15–44, Springer, Business Media, New York (2012).

    [46] A. K. Poulsen, L. Arleth, K. Almdalk, A.M. Scharff- Poulsen,"Unusually large acrylamide induced effect on the droplet size inAOT/Brij30water-in-oil emulsions," J. Colloid Interface Sci. 306, 143–153 (2008).

    [47] A. K. Poulsen, A. M. Sharff-Poulsen, L. F. Olsen, "Horseradish peroxidase embedded in polyacrylamide nanoparticles enable optical detection of reactive oxygen species," Anal. Biochem. 366, 29– 36 (2007).

    [48] C. F. Williams, M. Kombrabail, K. Vijayalakshmi, N. White, G. Krishnamoorthy, D. Lloyd, "Technical Design Note: Evaluation of two novel methods for assessing intracellular O2," Meas. Sci. Technol. 23, 084005 (2012).

    [49] C. O. M. Millet, D. Lloyd, C. F. Williams, J. Cable "In vitro culture of the diplomonad fish parasite Spironucleus vortens reveals unusually fast doubling time and a typical biphasic growth," J. Fish Dis. 34, 71–73 (2010).

    [50] V. K. Ramshesh, Luminescence lifetime imaging microscopy by confocal pinhole shifting (LLIMCPS), Ph.D. Thesis, University of North Carolina at Chapel Hill, NC, USA (2007).

    [51] V. K. Ramshesh, J. J. Lemasters, "Pinhole shifting lifetime imaging microscopy," J. Biomed. Opt. 13, 064001 (2008).

    [52] Y. D. Paila, M. Kombrabail, G. Krishnamoorthy, A. Chattopadhyay, "Oligomerization of the serotonin (1A) receptor in live cells: A time-resolved fluorescence anisotropy approach," J. Phys. Chem. B 115, 11439–11447 (2011).

    [53] B. Chance, G. R. Williams, "The respiratory chain and oxidative phosphorylation," J. Biol. Chem. 217, 429–438 (1955).

    [54] D. DeVault, J. H. Parkes, B. Chance, "Electron tunnelling in cytochromes," Nature, 215, 642–644 (1967).

    [55] B. Chance, H. Sies, A. Boveris, "Hydrogen peroxide metabolism in mammalian organs," Physiol. Rev. 59, 527–605 (1979).

    [56] M.Matsubara,M. Ranji, B.G. Leshnower,M. Norma, S. J. Radcliff, B. Chance, R. C. Gorman, J.H. Gorman 3rd, "In vivo assessment of cyclosporine on mitochondrial function during myocardial ischemia and reperfusion," Ann. Thorac. Surg. 89, 1532–1537 (2010).

    [57] D. F. Wilson, D. K. Harrison, "Simultaneous monitoring of brain and skin oxygenation during haemorrhagic shock in piglets," Adv. Exp. Med. Biol. 789, 51–57 (2013).

    [58] S. M. Kasmi, A. J. Salvaggio, A. D. Estrada, M. A. Hemati, N. K. Shayduk, E. Roussakis, T. A. Jones, S. A. Vinogradov, A. K. Dunn, "Three-dimensional mapping of oxygen tension in cortical arterioles before and after occlusion," Biomed. Opt. Express 4, 1061–1073 (2013).

    [59] J. Wanek, P. Y. Teng, N. P. Blair, M. Shahidi, "Inner retinal oxygen delivery and metabolism under normoxia and hypoxia in rat," Invest. Opthalmol. Vis. Sci. 54, 5012–5019 (2013).

    [60] R. K. Jain, L. L. Munn, D. Fukumura, "Measuring interstitial pH and pO2 in mouse tumors," Cold Spring Harb. Protoc. 7, 678–680 (2013).

    [61] D. B.Papkovsky, R. I.Dmitriev, "Biological, detection by optical sensing," Chem. Soc. Rev. (June 2013), DOI: 10.1039/c3cs60131e.

    David Lloyd, Catrin F. Williams, K. Vijayalakshmi, M. Kombrabail, Nick White, Anthony J. Hayes, Miguel A. Aon, G. Krishnamoorthy. Intracellular oxygen: Similar results from two methods of measurement using phosphorescent nanoparticles[J]. Journal of Innovative Optical Health Sciences, 2014, 7(2): 1350041
    Download Citation