• Laser & Optoelectronics Progress
  • Vol. 60, Issue 24, 2411001 (2023)
Yuxin Long, Wenjie Lai, Huaiyuan Zhang, Hongbo Zhang..., Chengshi Li and Ziji Liu*|Show fewer author(s)
Author Affiliations
  • College of Optoelectronic Science and Engineering, University of Electronic Science and Technology, Chengdu 611731, Sichuan, China
  • show less
    DOI: 10.3788/LOP230882 Cite this Article Set citation alerts
    Yuxin Long, Wenjie Lai, Huaiyuan Zhang, Hongbo Zhang, Chengshi Li, Ziji Liu. Soft Histogram of Gradients Loss: A loss Function for Optimization of the Image Fusion Networks[J]. Laser & Optoelectronics Progress, 2023, 60(24): 2411001 Copy Citation Text show less
    Structure of three training networks . (a) Structure of NestFuse [3]; (b) structure of Res2Fusion [7]; (c) structure of UNFusion [8]
    Fig. 1. Structure of three training networks . (a) Structure of NestFuse [3]; (b) structure of Res2Fusion [7]; (c) structure of UNFusion [8]
    Image comparison fused by different networks on the TNO dataset. (a) (b) Source images; (c) NestFuse; (d) NestFuse-HOG; (e) Res2Fusion; (f) Res2Fusion-HOG; (g) UNFusion; (h) UNFusion-HOG
    Fig. 2. Image comparison fused by different networks on the TNO dataset. (a) (b) Source images; (c) NestFuse; (d) NestFuse-HOG; (e) Res2Fusion; (f) Res2Fusion-HOG; (g) UNFusion; (h) UNFusion-HOG
    Image comparison fused by different networks on the RoadScene dataset. (a) (b) Source images; (c) NestFuse; (d) NestFuse-HOG; (e) Res2Fusion; (f) Res2Fusion-HOG; (g) UNFusion; (h) UNFusion-HOG
    Fig. 3. Image comparison fused by different networks on the RoadScene dataset. (a) (b) Source images; (c) NestFuse; (d) NestFuse-HOG; (e) Res2Fusion; (f) Res2Fusion-HOG; (g) UNFusion; (h) UNFusion-HOG
    Fusion image comparison before and after loss function applied in NestFuse network. (a) (b) Source image 1; (c) image of source image 1 fused by NestFuse network; (d) image of source image 1 fused by NestFuse-HOG network; (e) (f) source image 2; (g) image of source image 2 fused by NestFuse network; (h) image of source image 2 fused by NestFuse-HOG network
    Fig. 4. Fusion image comparison before and after loss function applied in NestFuse network. (a) (b) Source image 1; (c) image of source image 1 fused by NestFuse network; (d) image of source image 1 fused by NestFuse-HOG network; (e) (f) source image 2; (g) image of source image 2 fused by NestFuse network; (h) image of source image 2 fused by NestFuse-HOG network
    Image comparison fused by different networks on the TNO dataset. (a) (b) Source images; (c) NestFuse; (d) NestFuse-grad; (e) NestFuse+grad; (f) NestFuse-perceptual; (g) NestFuse-HOG
    Fig. 5. Image comparison fused by different networks on the TNO dataset. (a) (b) Source images; (c) NestFuse; (d) NestFuse-grad; (e) NestFuse+grad; (f) NestFuse-perceptual; (g) NestFuse-HOG
    Image comparison fused by different networks on the RoadScene dataset. (a) (b) Source images; (c) NestFuse; (d) NestFuse-grad; (e) NestFuse+grad; (f) NestFuse-perceptual; (g) NestFuse-HOG
    Fig. 6. Image comparison fused by different networks on the RoadScene dataset. (a) (b) Source images; (c) NestFuse; (d) NestFuse-grad; (e) NestFuse+grad; (f) NestFuse-perceptual; (g) NestFuse-HOG
    NetworkImage intensity lossStructural similarity loss
    NestFuseMSEMS-SSIM
    Res2FusionMSEMS-SSIM
    Table 1. Original loss function of the network
    NetworkENSDMISCDMS-SSIMFMI_dctFMI_wQabfVIF
    NestFuse6.919882.752313.83971.73350.86250.35800.43710.48700.7865
    NestFuse-HOG6.943584.529513.88701.74910.86840.34260.43230.48920.7995
    Res2Fusion6.796377.606813.59271.73650.86810.37450.43730.47600.7164
    Res2Fusion-HOG6.808778.559313.61731.73980.86820.37210.43620.47600.7271
    UNFusion6.907083.645413.81391.70970.85050.35060.43800.49400.8061
    UNFusion-HOG6.921084.853613.84191.71310.85000.34860.44120.49640.8165
    Table 2. Quantitative comparison on the TNO dataset
    NetworkENSDMISCDMS-SSIMFMI_dctFMI_wQabfVIF
    NestFuse7.441879.685714.88351.65040.85550.34460.43950.50770.9009
    NestFuse-HOG7.460480.489214.92091.66880.85970.32300.43320.50620.9172
    Res2Fusion7.330073.683314.65991.64760.86300.36970.43260.50830.7806
    Res2Fusion-HOG7.346974.543114.69381.65260.86160.36650.43180.50990.7947
    UNFusion7.413779.445514.82751.63550.84420.33860.43610.51020.9033
    UNFusion-HOG7.423180.018614.84621.63690.84160.33920.44060.51190.9127
    Table 3. Quantitative comparison on the RoadScene dataset
    NetworkENSDMISCDMS-SSIMFMI_dctFMI_wQabfVIF
    NestFuse6.919882.752313.83971.73350.86250.35800.43710.48700.7865
    NestFuse-grad6.909182.263413.81811.73900.86520.34430.43370.48680.7781
    NestFuse+grad6.929783.541813.85931.74330.86650.34890.43470.48510.7928
    NestFuse- perceptual6.899881.203813.79951.73470.86300.35000.43530.48780.7684
    NestFuse-HOG6.943584.529513.88701.74910.86840.34260.43230.48920.7995
    Table 4. Quantitative comparison on the TNO dataset
    NetworkENSDMISCDMS-SSIMFMI_dctFMI_wQabfVIF
    NestFuse7.441879.685714.88351.65040.85550.34460.43950.50770.9009
    NestFuse-grad7.447579.802314.89501.66030.85850.32700.43530.50610.9032
    NestFuse+grad7.439479.383414.87891.65660.85770.33450.43660.50560.8977
    NestFuse- perceptual7.436879.324914.87351.65220.85590.33460.43750.50760.8947
    NestFuse-HOG7.460480.489214.92091.66880.85970.32300.43320.50620.9172
    Table 5. Quantitative comparison on the RoadScene dataset
    Yuxin Long, Wenjie Lai, Huaiyuan Zhang, Hongbo Zhang, Chengshi Li, Ziji Liu. Soft Histogram of Gradients Loss: A loss Function for Optimization of the Image Fusion Networks[J]. Laser & Optoelectronics Progress, 2023, 60(24): 2411001
    Download Citation