• Journal of Semiconductors
  • Vol. 40, Issue 1, 011804 (2019)
Bo Fu, Zhitai Jia, Wenxiang Mu, Yanru Yin, Jian Zhang, and Xutang Tao
Author Affiliations
  • State Key Laboratory of Crystal Materials & Key Laboratory of Functional Crystal Materials and Device, Shandong University, Jinan 250100, China
  • show less
    DOI: 10.1088/1674-4926/40/1/011804 Cite this Article
    Bo Fu, Zhitai Jia, Wenxiang Mu, Yanru Yin, Jian Zhang, Xutang Tao. A review of β-Ga2O3 single crystal defects, their effects on device performance and their formation mechanism[J]. Journal of Semiconductors, 2019, 40(1): 011804 Copy Citation Text show less
    References

    [1] M Baldini, Z Galazka, G Wagner. Recent progress in the growth of β-Ga2O3 for power electronics applications. Mater Sci Semicond Process, 78, 132(2017).

    [2] S J Pearton, J Yang, IV P H Cary et al. A review of Ga2O3 materials, processing, and devices. Appl Phys Rev, 5, 011301(2018).

    [3] S Jang, S Jung, K Beers et al. A comparative study of wet etching and contacts on (2-01) and (010) oriented β-Ga2O3. J Alloys Compd, 731, 118-125(2018).

    [4]

    [5] S I Stepanov, V I Nikolaev, V E Bougrov et al. Gallium oxide: properties and applica a review. Rev Adv Mater Sci, 44, 63(2016).

    [6] T Harwig, G J Wubs, G J Dirksen. Electrical properties of β-Ga2O3 single crystals. Solid State Commun, 18, 1223(1976).

    [7] A O Chase. Growth of β-Ga2O3 by the Verneuil Technique. J Am Ceram Soc, 47, 470(1964).

    [8] M R Lorenz, J F Woods, R J Gambino. Some electrical properties of the semiconductor β-Ga2O3. J Phys Chem Solids, 28, 403(1967).

    [9] E G Víllora, M Yamaga, T Inoue et al. Optical spectroscopy study on β-Ga2O3. Jpn J Appl Phys, 41, L622(2002).

    [10] J Zhang, B Li, C Xia et al. Growth and spectral characterization of β-Ga2O3 single crystals. J Phys Chem Solids, 67, 2448(2006).

    [11] E G Víllora, K Shimamura, Y Yoshikawa et al. Large-size β-Ga2O3 single crystals and wafers. J Cryst Growth, 270, 420(2004).

    [12] E Ohba, T Kobayashi, M Kado et al. Defect characterization of β-Ga2O3 single crystals grown by vertical Bridgman method. Jpn J Appl Phys, 55, 1202B(2016).

    [13] K Hoshikawa, E Ohba, T Kobayashi et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air. J Cryst Growth, 447, 36(2016).

    [14] A Hideo, N Kengo, T Hidetoshi et al. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method. Jpn J Appl Phys, 47, 8506(2008).

    [15] R O Bell. Modeling of the time dependence of EFG crystal growth. J Cryst Growth, 104, 23(1990).

    [16] L Braescu, T Duffar. Effect of buoyancy and Marangoni forces on the dopant distribution in a single crystal fiber grown from the melt by edge-defined film-fed growth (EFG) method. J Cryst Growth, 310, 484(2008).

    [17] O Bunoiu, I Nicoara, J L Santailler et al. Fluid flow and solute segregation in EFG crystal growth process. J Cryst Growth, 275, e799(2005).

    [18] Z Galazka, R Uecker, R Fornari. A novel crystal growth technique from the melt: levitation-assisted self-seeding crystal growth method. J Cryst Growth, 388, 61(2014).

    [19] K Shimamura, E G Villora. Czochralski-Based growth and characteristics of selected novel single crystals for optical applications. Acta Phys Polon A, 124, 265(2013).

    [20] Z Galazka, R Uecker, K Irmscher et al. Czochralski growth and characterization of β-Ga2O3 single crystals. Cryst Res Technol, 45, 1229(2010).

    [21] K Irmscher, Z Galazka, M Pietsch et al. Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method. J Appl Phys, 110, 063720(2011).

    [22] Y Tomm, P Reiche, D Klimm et al. Czochralski grown Ga2O3 crystals. Jpn J Appl Phys, 220, 510(2000).

    [23] Z Galazka, R Uecker, D Klimm et al. Scaling-up of bulk β-Ga2O3 single crystals by the Czochralski method. ECS J Solid State Sci Technol, 6, Q3007(2017).

    [24] G Katz, R Roy. Flux Growth and characterization of β-Ga2O3 single crystals. J Am Ceram Soc, 49, 168(1966).

    [25] V I Chani, K Inoue, K Shimamura et al. Segregation coefficients in β-Ga2O3:Cr crystals grown from a B2O3 based flux. J Cryst Growth, 132, 335(1993).

    [26] T Matsumoto, M Aoki, A Kinoshita et al. Absorption and reflection of vapor grown single crystal platelets of β-Ga2O3. Jpn J Appl Phys, 13, 1578(1974).

    [27] H Juskowiak, A Pajaczkowska. Chemical transport of β-Ga2O3 using chlorine as a transporting agent. J Mater Sci, 21, 3430(1986).

    [28] M A Mastro, A Kuramata, J Calkins et al. Perspective—opportunities and future directions for Ga2O3. ECS J Solid State Sci Technol, 6, 356(2017).

    [29] M Higashiwaki, K Sasaki, A Kuramata et al. Development of gallium oxide power devices. Physl Status Solidi A, 211, 21(2014).

    [30] K Shimamura, E G Víllora, K Domen et al. Epitaxial growth of GaN on (1 0 0) β-Ga2O3 substrates by metalorganic vapor phase epitaxy. Jpn J Appl Phys, 44, L7(2004).

    [31] P J Wellmann. Power electronic semiconductor materials for automotive and energy saving applications–SiC, GaN, Ga2O3, and diamond. Zeitschrift für anorganische und allgemeine Chemie, 643, 1312(2017).

    [32] M Higashiwaki, K Sasaki, A Kuramata et al. Gallium oxide (Ga2O3) metal–semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 100, 013504(2012).

    [33] M Higashiwaki, K Sasaki, H Murakami et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol, 31, 034001(2016).

    [34] N Ma, N Tanen, A Verma et al. Intrinsic electron mobility limits in β-Ga2O3. Appl Phys Lett, 109, 212101(2016).

    [35] S Fujita. Wide-bandgap semiconductor materials: For their full bloom. Jpn J Appl Phys, 54, 030101(2015).

    [36] R P Burns. Systematics of the evaporation coefficient Al2O3, Ga2O3, In2O3. J Chem Phys, 44, 3307(1966).

    [37] J Takahashi, M Kanaya, Y Fujiwara. Sublimation growth of SiC single crystalline ingots on faces perpendicular to the (0001) basal plane. J Cryst Growth, 135, 61(1994).

    [38] K Nakai, T Nagai, K Noami et al. Characterization of defects in β-Ga2O3 single crystals. Jpn J Appl Phys, 54, 051103(2015).

    [39] O Ueda, N Ikenaga, K Koshi et al. Structural evaluation of defects in β-Ga2O3 single crystals grown by edge-defined film-fed growth process. Jpn J Appl Phys, 55, 1202B(2016).

    [40] K Hanada, T Moribayashi, T Uematsu et al. Observation of nanometer-sized crystalline grooves in as-grown β-Ga2O3 single crystals. Jpn J Appl Phys, 55, 030303(2016).

    [41] P G Neudeck, J A Powell. Performance limiting micropipe defects in silicon carbide wafers. IEEE Electron Device Lett, 15, 63(1994).

    [42] M A Crimp, B A Simkin, B C Ng. Demonstration of the g· bxu = 0 edge dislocation invisibility criterion for electron channelling contrast imaging. Philosophical Magazine Letters, 81, 833(2001).

    [43] K Hanada, T Moribayashi, K Koshi et al. Origins of etch pits in β-Ga2O3 (010) single crystals. Jpn J Appl Phys, 55, 1202B(2016).

    [44] T Oshima, A Hashiguchi, T Moribayashi et al. Electrical properties of Schottky barrier diodes fabricated on (001) β-Ga2O3 substrates with crystal defects. Jpn J Appl Phys, 56, 086501(2017).

    [45] M Kasu, T Oshima, K Hanada et al. Crystal defects observed by the etch-pit method and their effects on Schottky-barrier-diode characteristics on (-201) β-Ga2O3. Jpn J Appl Phys, 56, 091101(2017).

    [46] A Kuramata, K Koshi, S Watanabe et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn J Appl Phys, 55, 12022(2016).

    [47] Z Galazka, K Irmscher, R Uecker et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method. J Cryst Growth, 404, 184(2014).

    [48] M Kasu, K Hanada, T Moribayashi et al. Relationship between crystal defects and leakage current in β-Ga2O3 Schottky barrier diodes. Jpn J Appl Phys, 55, 1202B(2016).

    [49] L V C Assali. Electrically active centers in partial dislocations in semiconductors. Physica B, 308, 489(2001).

    [50] I Capan, V Borjanović, B Pivac. Dislocation-related deep levels in carbon rich p-type polycrystalline silicon. Sol Energy Mater Sol Cells, 91, 931(2007).

    [51] Z Ikonić, G P Srivastava, J C Inkson. Electronic properties of twin boundaries and twinning superlattices in diamond-type and zinc-blende-type semiconductors. Phys Rev B, 48, 17181(1993).

    [52] H Yamaguchi, A Kuramata, T Masui. Slip system analysis and X-ray topographic study on β-Ga2O3. Superlattices Microstruct, 99, 99(2016).

    [53]

    [54] F C Frank. Capillary equilibria of dislocated crystals. Acta Crystallographica, 4, 497(1951).

    [55] W C Dash. Silicon crystals free of dislocations. J Appl Phys, 29, 736(1958).

    [56] W C Dash. Improvements on the pedestal method of growing silicon and germanium crystals. J Appl Phys, 31, 736(1960).

    [57] T Taishi, X Huang, I Yonenaga et al. Behavior of the edge dislocation propagating along the growth direction in Czochralski Si crystal growth. J Cryst Growth, 275, e2147(2005).

    [58] T Taishi, Y Ohno, I Yonenaga et al. Influence of seed/crystal interface shape on dislocation generation in Czochralski Si crystal growth. Physica B, 401, 560(2007).

    [59] J W Noor, B Dam. The growth spiral morphology on {100} KDP related to impurity effects and step kinetics. J Cryst Growth, 76, 243(1986).

    [60]

    [61] V V Chaldyshev, A L Kolesnikova, N A Bert et al. Investigation of dislocation loops associated with As–Sb nanoclusters in GaAs. J Appl Phys, 97, 024309(2005).

    [62] M Neubert, A Kwasniewski, R Fornari. Analysis of twin formation in sphalerite-type compound semiconductors: A model study on bulk InP using statistical methods. J Cryst Growth, 310, 5270(2008).

    [63] H Chung, M Dudley, D J Jr Larson et al. The mechanism of growth-twin formation in zincblende crystals: new insights from a study of magnetic liquid encapsulated Czochralski-grown InP single crystals. J Cryst Growth, 187, 9(1998).

    Bo Fu, Zhitai Jia, Wenxiang Mu, Yanru Yin, Jian Zhang, Xutang Tao. A review of β-Ga2O3 single crystal defects, their effects on device performance and their formation mechanism[J]. Journal of Semiconductors, 2019, 40(1): 011804
    Download Citation