• Photonics Research
  • Vol. 8, Issue 4, 616 (2020)
Yu Xie1, Dawei Cai1, Hao Wu1, Jing Pan1, Ning Zhou1, Chenguang Xin1, Shaoliang Yu1, Pan Wang1, Xiaoshun Jiang2, Jianrong Qiu1, Xin Guo1、*, and Limin Tong1、3、4
Author Affiliations
  • 1State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 2National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 4e-mail: phytong@zju.edu.cn
  • show less
    DOI: 10.1364/PRJ.386395 Cite this Article Set citation alerts
    Yu Xie, Dawei Cai, Hao Wu, Jing Pan, Ning Zhou, Chenguang Xin, Shaoliang Yu, Pan Wang, Xiaoshun Jiang, Jianrong Qiu, Xin Guo, Limin Tong. Mid-infrared chalcogenide microfiber knot resonators[J]. Photonics Research, 2020, 8(4): 616 Copy Citation Text show less
    References

    [1] B. J. Eggleton, B. Luther-Davies, K. Richardson. Chalcogenide photonics. Nat. Photonics, 5, 141-148(2011).

    [2] A. Schliesser, N. Picque, T. W. Haensch. Mid-infrared frequency combs. Nat. Photonics, 6, 440-449(2012).

    [3] V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, A. M. Agarwal. Mid-infrared materials and devices on a Si platform for optical sensing. Sci. Technol. Adv. Mater., 15, 014603(2014).

    [4] R. Shankar, I. Bulu, M. Lončar. Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared. Appl. Phys. Lett., 102, 051108(2013).

    [5] A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, M. Lipson. Silicon-chip mid-infrared frequency comb generation. Nat. Commun., 6, 6299(2015).

    [6] M. J. Yu, Y. Okawachi, A. G. Griffith, N. Picque, M. Lipson, A. L. Gaeta. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun., 9, 1869(2018).

    [7] P. Ma, D. Y. Choi, Y. Yu, Z. Y. Yang, K. Vu, T. Nguyen, A. Mitchell, B. Luther-Davies, S. Madden. High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing. Opt. Express, 23, 19969-19979(2015).

    [8] Y. Chen, H. T. Lin, J. J. Hu, M. Li. Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing. ACS Nano, 8, 6955-6961(2014).

    [9] C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, T. J. Kippenberg. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nat. Commun., 4, 1345(2013).

    [10] C. Lecaplain, C. Javerzac-Galy, M. L. Gorodetsky, T. J. Kippenberg. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials. Nat. Commun., 7, 13383(2016).

    [11] A. A. Savchenkov, V. S. Ilchenko, F. Di Teodoro, P. M. Belden, W. T. Lotshaw, A. B. Matsko, L. Maleki. Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers. Opt. Lett., 40, 3468-3471(2015).

    [12] T. Schwarzl, W. Heiß, G. Springholz. Ultra-high-finesse IV-VI microcavities for the midinfrared. Appl. Phys. Lett., 75, 1246-1248(1999).

    [13] C. G. Xin, H. Wu, Y. Xie, S. L. Yu, N. Zhou, Z. X. Shi, X. Guo, L. M. Tong. CdTe microwires as mid-infrared optical waveguides. Opt. Express, 26, 10944-10952(2018).

    [14] R. Shankar, R. Leijssen, I. Bulu, M. Loncar. Mid-infrared photonic crystal cavities in silicon. Opt. Express, 19, 5579-5586(2011).

    [15] Y. H. Guo, J. Wang, Z. H. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. F. Li, L. Zhang. Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator. Nanophotonics, 7, 1461-1467(2018).

    [16] M. Siciliani de Cumis, S. Borri, G. Insero, I. Galli, A. Savchenkov, D. Eliyahu, V. Ilchenko, N. Akikusa, A. Matsko, L. Maleki, P. De Natale. Microcavity-stabilized quantum cascade laser. Laser Photon. Rev., 10, 153-157(2016).

    [17] L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature, 426, 816-819(2003).

    [18] X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. R. Yang. Demonstration of optical microfiber knot resonators. Appl. Phys. Lett., 88, 223501(2006).

    [19] R. Ismaeel, T. Lee, M. Ding, M. Belal, G. Brambilla. Optical microfiber passive components. Laser Photon. Rev., 7, 350-384(2013).

    [20] X. Q. Wu, L. M. Tong. Optical microfibers and nanofibers. Nanophotonics, 2, 407-428(2013).

    [21] L. M. Tong. Micro/nanofibre optical sensors: challenges and prospects. Sensors, 18, 903(2018).

    [22] L. M. Tong, J. Y. Lou, E. Mazur. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Opt. Express, 12, 1025-1035(2004).

    [23] Y. Yu, T. H. Xiao, H. L. Guo, Z. Y. Li. Sensing of microparticles based on a broadband ultrasmall microcavity in a freely suspended microfiber. Photon. Res., 5, 143-150(2017).

    [24] X. L. Li, H. Ding. All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid. Opt. Lett., 37, 5187-5189(2012).

    [25] Z. L. Xu, Q. Z. Sun, B. R. Li, Y. Y. Luo, W. G. Lu, D. M. Liu, P. P. Shum, L. Zhang. Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect. Opt. Express, 23, 6662-6672(2015).

    [26] X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, L. L. Hu. Demonstration of microfiber knot laser. Appl. Phys. Lett., 89, 143513(2006).

    [27] X. S. Jiang, Q. H. Song, L. Xu, J. Fu, L. M. Tong. Microfiber knot dye laser based on the evanescent-wave-coupled gain. Appl. Phys. Lett., 90, 233501(2007).

    [28] M. Liu, R. Tang, A. P. Luo, W. C. Xu, Z. C. Luo. Graphene-decorated microfiber knot as a broadband resonator for ultrahigh repetition-rate pulse fiber lasers. Photon. Res., 6, C1-C7(2018).

    [29] X. S. Jiang, Y. Chen, G. Vienne, L. M. Tong. All-fiber add–drop filters based on microfiber knot resonators. Opt. Lett., 32, 1710-1712(2007).

    [30] A. Zakery, S. R. Elliott. Optical properties and applications of chalcogenide glasses: a review. J. Non·Cryst. Solids, 330, 1-12(2003).

    [31] S. Gao, X. Y. Bao. Chalcogenide taper and its nonlinear effects and sensing applications. iScience, 23, 100802(2020).

    [32] F. Vanier, Y. A. Peter, M. Rochette. Cascaded Raman lasing in packaged high quality As2S3 microspheres. Opt. Express, 22, 28731-28739(2014).

    [33] O. Aktas, E. Ozgur, O. Tobail, M. Kanik, E. Huseyinoglu, M. Bayindir. A new route for fabricating on-chip chalcogenide microcavity resonator arrays. Adv. Opt. Mater., 2, 618-625(2014).

    [34] O. Aktas. Chalcogenide microresonators tailored to distinct morphologies by the shaping of glasses on silica tapers. Opt. Lett., 42, 907-910(2017).

    [35] H. T. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, J. J. Hu. Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators. Opt. Lett., 38, 1470-1472(2013).

    [36] N. Singh, D. D. Hudson, R. Wang, E. C. Magi, D. Y. Choi, C. Grillet, B. Luther-Davies, S. Madden, B. J. Eggleton. Positive and negative phototunability of chalcogenide (AMTIR-1) microdisk resonator. Opt. Express, 23, 8681-8686(2015).

    [37] S. Levy, M. Klebanov, A. Zadok. High-Q ring resonators directly written in As2S3 chalcogenide glass films. Photon. Res., 3, 63(2015).

    [38] O. Aktas, M. Bayindir. Tapered nanoscale chalcogenide fibers directly drawn from bulk glasses as optical couplers for high-index resonators. Appl. Opt., 56, 385-390(2017).

    [39] S. Hocde, C. Boussard-Pledel, G. Fonteneau, D. Lecoq, H. L. Ma, J. Lucas. Recent developments in chemical sensing using infrared glass fibers. J. Non-Cryst. Solids, 274, 17-22(2000).

    [40] J. Keirsse, C. Boussard-Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, J. Lucas. IR optical fiber sensor for biomedical applications. Vib. Spectrosc., 32, 23-32(2003).

    [41] D.-I. Yeom, E. C. Maegi, M. R. E. Lamont, M. A. F. Roelens, L. B. Fu, B. J. Eggleton. Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. Opt. Lett., 33, 660-662(2008).

    [42] C. W. Rudy, A. Marandi, K. L. Vodopyanov, R. L. Byer. Octave-spanning supercontinuum generation in in situ tapered As2S3 fiber pumped by a thulium-doped fiber laser. Opt. Lett., 38, 2865-2868(2013).

    [43] Q. M. Zhang, M. Li, Q. A. Hao, D. H. Deng, H. Zhou, H. P. Zeng, L. Zhan, X. A. Wu, L. Y. Liu, L. Xu. Fabrication and characterization of on-chip optical nonlinear chalcogenide nanofiber devices. Opt. Lett., 35, 3829-3831(2010).

    [44] M. J. Weber. Handbook of Optical Materials(2003).

    [45] S. T. Chu, W. Pan, S. Suzuki, B. E. Little, S. Sato, T. Kokuban. Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay. IEEE Photon. Technol. Lett., 11, 1138-1140(1999).

    [46] J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, S. G. N. Chormaic. Heat-and-pull rig for fiber taper fabrication. Rev. Sci. Instrum., 77, 083105(2006).

    [47] E. M. Dianov, V. M. Krasteva, V. G. Plotnichenko, S. K. Semenov, M. F. Churbanov, I. Scripachev. Mechanical properties of chalcogenide glass optical fibers. Proc. SPIE, 0683, 92-100(1990).

    [48] J. Wang, T. R. Zhan, G. S. Huang, P. K. Chu, Y. F. Mei. Optical microcavities with tubular geometry: properties and applications. Laser Photon. Rev., 8, 521-547(2014).

    [49] Y. Chen, F. Xu, Y. Q. Lu. Teflon-coated microfiber resonator with weak temperature dependence. Opt. Express, 19, 22923-22928(2011).

    [50] C. Baker, M. Rochette. Highly nonlinear hybrid AsSe-PMMA microtapers. Opt. Express, 18, 12391-12398(2010).

    [51] S. Sain, D. Ray, A. Mukhopadhyay, S. Sengupta, T. Kar, C. J. Ennis, P. K. S. M. Rahman. Synthesis and characterization of PMMA-cellulose nanocomposites by in situ polymerization technique. J. Appl. Polym. Sci., 126, E127-E134(2012).

    [52] S. Tsuda, S. Yamaguchi, Y. Kanamori, H. Yugami. Spectral and angular shaping of infrared radiation in a polymer resonator with molecular vibrational modes. Opt. Express, 26, 6899-6915(2018).

    [53] P. T. Lin, J. Giammarco, N. Borodinov, M. Savchak, V. Singh, L. C. Kimerling, D. T. Tan, K. A. Richardson, I. Luzinov, A. Agarwal. Label-free water sensors using hybrid polymer-dielectric mid-infrared optical waveguides. ACS Appl. Mater. Interfaces, 7, 11189-11194(2015).

    CLP Journals

    [1] Qing Wu, Yunzheng Wang, Weichun Huang, Cong Wang, Zheng Zheng, Meng Zhang, Han Zhang. MXene-based high-performance all-optical modulators for actively Q-switched pulse generation[J]. Photonics Research, 2020, 8(7): 1140

    Yu Xie, Dawei Cai, Hao Wu, Jing Pan, Ning Zhou, Chenguang Xin, Shaoliang Yu, Pan Wang, Xiaoshun Jiang, Jianrong Qiu, Xin Guo, Limin Tong. Mid-infrared chalcogenide microfiber knot resonators[J]. Photonics Research, 2020, 8(4): 616
    Download Citation