• Journal of Innovative Optical Health Sciences
  • Vol. 9, Issue 1, 1640001 (2016)
Qiaoya Lin1、2, Shuang Sha1、2, Fei Yang1、2, Honglin Jin1、2, and Zhihong Zhang1、2、*
Author Affiliations
  • 1Britton Chance Center for Biomedical Photonics Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074, P. R. China
  • 2MoE Key Laboratory for Biomedical Photonics Department of Biomedical Engineering Huazhong University of Science and Technology Wuhan 430074, P. R. China
  • show less
    DOI: 10.1142/s1793545816400010 Cite this Article
    Qiaoya Lin, Shuang Sha, Fei Yang, Honglin Jin, Zhihong Zhang. KillerRed protein based in vivo photodynamic therapy and corresponding tumor metabolic imaging[J]. Journal of Innovative Optical Health Sciences, 2016, 9(1): 1640001 Copy Citation Text show less
    References

    [1] M. A. Biel, "Photodynamic therapy and the treatment of head and neck neoplasia," The Laryngoscope 108, 1259–1268 (1998).

    [2] M. A. Rosenthal, B. Kavar, J. S. Hill, D. J. Morgan, R. L. Nation, S. S. Stylli, R. L. Basser, S. Uren, H. Geldard,M.D. Green, S. B. Kahl, A.H. Kaye, "Phase I and pharmacokinetic study of photodynamic therapy for high-grade gliomas using a novel boronated porphyrin," J. Clin. Oncol. 19, 519–524 (2001).

    [3] A. Dimofte, T. C. Zhu, S. M. Hahn, R. A. Lustig, "In vivo light dosimetry for motexafin lutetiummediated PDT of recurrent breast cancer," Lasers Surg. Med. 31, 305–312 (2002).

    [4] D. E. Dolmans, D. Fukumura, R. K. Jain, "Photodynamic therapy for cancer," Nat. Rev. Cancer 3, 380–387 (2003).

    [5] M. V. Shirmanova, E. O. Serebrovskaya, K. A. Lukyanov, L. B. Snopova, M. A. Sirotkina, N. N. Prodanetz, M. L. Bugrova, E. A. Minakova, I. V. Turchin, V. A. Kamensky, S. A. Lukyanov, E. V. Zagaynova, "Phototoxic effects of fluorescent protein KillerRed on tumor cells in mice," J. Biophotonics 6, 283–290 (2013).

    [6] K. M. S. Russell, B. Vegh, Marina K. Kuimova, "Reactive oxygen species in photochemistry of the red fluorescent protein"Killer Red," Chem. Commun. 4, 4887–4889 (2011).

    [7] V. Adler, Z. Yin, K. D. Tew, Z. Ronai, "Role of redox potential and reactive oxygen species in stress signaling," Oncogene 18, 6104–6111 (1999).

    [8] V. Irihimovitch, M. Shapira, "Glutathione redox potential modulated by reactive oxygen species regulates translation of Rubisco large subunit in the chloroplast," J. Biol. Chem. 275, 16289–16295 (2000).

    [9] Y. Ye, L. X. Wang, D. P. Zhang, Y. J. Yan, Z. L. Chen, "Studies on photodynamic mechanism of a novel chlorine derivative (TDPC) and its antitumor effect for photodynamic therapy in vitro and in vivo," J. Innov. Opt. Health. Sci. 8, (2015).

    [10] R. W. K. Wu, E. S. M. Chu, Z. Huang, M. C. Olivo, D. C. W. Ip, C. M. N. Yow, "An in vitro investigation of photodynamic efficacy of FosPeg (R) on human colon cancer cells," J. Innov. Opt. Health. Sci. 8, (2015).

    [11] Z. X. Liao, Y. C. Li, H. M. Lu, H. W. Sung, "A genetically-encoded KillerRed protein as an intrinsically generated photosensitizer for photodynamic therapy," Biomaterials 35, 500–508 (2014).

    [12] G. Mueller, "From green to red — To more dead Autofluorescent proteins as photosensitizers," J. Photoch. Photobio. B 9, 95–98 (2010).

    [13] M. E. Bulina, K. A. Lukyanov, O. V. Britanova, D. Onichtchouk, S. Lukyanov, D. M. Chudakov, "Chromophore-assisted light inactivation (CALI) using the phototoxic fluorescent protein KillerRed," Nat. Protoc. 1, 947–953 (2006).

    [14] M. E. Bulina, D. M. Chudakov, O. V. Britanova, Y. G. Yanushevich, D. B. Staroverov, T. V. Chepurnykh, E. M. Merzlyak, M. A. Shkrob, S. Lukyanov, K. A. Lukyanov, "A genetically encoded photosensitizer," Nat. Biotechnol. 24, 95–99 (2006).

    [15] E. O. Serebrovskaya, E. F. Edelweiss, O. A. Stremovskiy, K. A. Lukyanov, D. M. Chudakov, S. M. Deyev, "Targeting cancer cells by using an antireceptor antibody-photosensitizer fusion protein," Proc. Natl. Acad. Sci. USA 106, 9221–9225 (2009).

    [16] W. Waldeck, G. Mueller, M. Wiessler, K. Toth, K. Braun, "Positioning effects of KillerRed inside of cells correlate with DNA strand breaks after activation with visible light," Int. J. Med. Sci. 8, 97–105 (2011).

    [17] T. Shibuya, Y. Tsujimoto, "Deleterious effects of mitochondrial ROS generated by KillerRed photodynamic action in human cell lines and C. elegans," J. Photoch. Photobio. 117, 1–12 (2012).

    [18] J. Morgan, A. R. Oseroff, "Mitochondria-based photodynamic anti-cancer therapy," Adv. Drug. Deliv. Rev. 49, 71–86 (2001).

    [19] X. Wang, "The expanding role of mitochondria in apoptosis," Genes. Dev. 15, 2922–2933 (2001).

    [20] S. Orrenius, "Mitochondrial regulation of apoptotic cell death," Toxicol. Lett. 149, 19–23 (2004).

    [21] M. Ristow, "Oxidative metabolism in cancer growth," Curr. Opin. Clin. Nutr. 9, 339–345 (2006).

    [22] L. Z. Li, "Imaging mitochondrial redox potential and its possible link to tumor metastatic potential," J. Bioenerg. Biomembr. 44, 645–653 (2012).

    [23] J. W. Locasale, L. C. Cantley, "Metabolic flux and the regulation of mammalian cell growth," Cell Metab. 14, 443–451 (2011).

    [24] P. P. Hsu, D. M. Sabatini, "Cancer cell metabolism: Warburg and beyond," Cell 134, 703–707 (2008).

    [25] M. G. Vander Heiden, "Targeting cancer metabolism: A therapeutic window opens," Nat. Rev. Drug Discov. 10, 671–684 (2011).

    [26] P. G. Michal Mokry, B. Vidinsky, "in vivo monitoring the changes of interstitial pH and FAD/ NADH," Photochem. Photobiol. 8, 793–797 (2006).

    [27] Z. Zhang, H. Li, Q. Liu, L. Zhou, M. Zhang, Q. Luo, J. Glickson, B. Chance, G. Zheng, "Metabolic imaging of tumors using intrinsic and extrinsic fluorescent markers," Biosens. Bioelectron. 20, 643–650 (2004).

    [28] B. Chance, B. Schoener, R. Oshino, F. Itshak, Y. Nakase, "Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals," J. Biol. Chem. 254, 4764–4771 (1979).

    [29] L. Z. Li, R. Zhou, H. N. Xu, L. Moon, T. Zhong, E. J. Kim, H. Qiao, R. Reddy, D. Leeper, B. Chance, J. D. Glickson, "Quantitative magnetic resonance and optical imaging biomarkers of melanoma metastatic potential," Proc. Natl. Acad. Sci. USA 106, 6608–6613 (2009).

    [30] K. P. Q. Irene Georgakoudi, "Optical imaging using endogenous contrast to assess metabolic state," Annu. Rev. Biomed. Eng. 14, 351–367 (2012).

    [31] D. B. Zhihong Zhang, Hui Li, "Redox ratio of mitochondria as an indicator for the response of photodynamic therapy,"J. Biomed. Opt. 9, 772–778 (2004).

    [32] A. Mayevsky, G. G. Rogatsky, "Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies," Am. J. Physiol Cell Ph. 292, C615–C640 (2007).

    [33] K. D. V. Jayanth Kumar, Ganesan Singaravelu, "In vivo estimation of redox states with auto- fluorescence spectroscopy in oral submucous fibrosis patients: A Pilot Study," J. Indian Acad. Oral Med. Radiol. 24, 257–260 (2012).

    [34] M. S. Islam, M. Honma, T. Nakabayashi, M. Kinjo, N. Ohta, "pH dependence of the fluorescence lifetime of FAD in solution and in cells," Int. J. Mol. Sci. 14, 1952–1963 (2013).

    [35] J. V. Rocheleau, W. S. Head, D. W. Piston, "Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response," J. Biol. Chem. 279, 31780–31787 (2004).

    [36] A. V. Kuznetsov, J. Troppmair, R. Sucher, M. Hermann, V. Saks, R. Margreiter, "Mitochondrial subpopulations and heterogeneity revealed by confocal imaging: Possible physiological role " Biochim. Biophys. Acta. 1757, 686–691 (2006).

    [37] R. Y. Tsien, "The green fluorescent protein," Annu. Rev. Biochem. 67, 509–544 (1998).

    Qiaoya Lin, Shuang Sha, Fei Yang, Honglin Jin, Zhihong Zhang. KillerRed protein based in vivo photodynamic therapy and corresponding tumor metabolic imaging[J]. Journal of Innovative Optical Health Sciences, 2016, 9(1): 1640001
    Download Citation