• Laser & Optoelectronics Progress
  • Vol. 60, Issue 9, 0900001 (2023)
Yunqi Liu1、*, Chen Jiang1, Zuyao Liu1、2, and Xinyi Zhao1、3
Author Affiliations
  • 1Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Ministry of Education, School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
  • 2Key Laboratory of Optoelectronic and Telecommunication of Jiangxi Province, School of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
  • 3Henan Key Laboratory of Optoelectronic Sensing Integrated Application, College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
  • show less
    DOI: 10.3788/LOP220735 Cite this Article Set citation alerts
    Yunqi Liu, Chen Jiang, Zuyao Liu, Xinyi Zhao. Long-Period Fiber Gratings[J]. Laser & Optoelectronics Progress, 2023, 60(9): 0900001 Copy Citation Text show less
    References

    [1] Hill K O, Fujii Y, Johnson D C et al. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication[J]. Applied Physics Letters, 32, 647-649(1978).

    [2] Vengsarkar A M, Lemaire P J, Judkins J B et al. Long-period fiber gratings as band-rejection filters[J]. Journal of Lightwave Technology, 14, 58-65(1996).

    [3] Vengsarkar A M, Pedrazzani J R, Judkins J B et al. Long-period fiber-grating-based gain equalizers[J]. Optics Letters, 21, 336-338(1996).

    [4] Shu X W, Zhang L, Bennion I. Sensitivity characteristics of long-period fiber gratings[J]. Journal of Lightwave Technology, 20, 255-266(2002).

    [5] Rao Y J, Zhu T, Mo Q J. Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating[J]. Optics Communications, 266, 187-190(2006).

    [6] Liu Z Y, Liu Y Q, Mou C B et al. CO2 laser-written long-period fiber grating with a high diffractive order cladding mode near the turning point[J]. Applied Optics, 57, 4756-4760(2018).

    [7] Liu Y Q, Lee H W, Chiang K S et al. Glass structure changes in CO2-laser writing of long-period fiber gratings in boron-doped single-mode fibers[J]. Journal of Lightwave Technology, 27, 857-863(2009).

    [8] Rego G, Ivanov O V, Marques P V S. Demonstration of coupling to symmetric and antisymmetric cladding modes in arc-induced long-period fiber gratings[J]. Optics Express, 14, 9594-9599(2006).

    [9] Zhao Y H, Liu Y Q, Zhang L et al. Mode converter based on the long-period fiber gratings written in the two-mode fiber[J]. Optics Express, 24, 6186-6195(2016).

    [10] Erdogan T. Cladding-mode resonances in short- and long-period fiber grating filters[J]. Journal of the Optical Society of America A, 14, 1760-1773(1997).

    [11] Chern G W, Wang L A. Transfer-matrix method based on perturbation expansion for periodic and quasi-periodic binary long-period gratings[J]. Journal of the Optical Society of America A, 16, 2675-2689(1999).

    [12] Yariv A. Coupled-mode theory for guided-wave optics[J]. IEEE Journal of Quantum Electronics, 9, 919-933(1973).

    [13] Ke H, Chiang K S, Peng J H. Analysis of phase-shifted long-period fiber gratings[J]. IEEE Photonics Technology Letters, 10, 1596-1598(1998).

    [14] Ramachandran S, Wang Z Y, Yan M. Bandwidth control of long-period grating-based mode converters in few-mode fibers[J]. Optics Letters, 27, 698-700(2002).

    [15] del Villar I, Achaerandio M, Arregui F J et al. Generation of selective fringes with cascaded long-period gratings[J]. IEEE Photonics Technology Letters, 18, 1412-1414(2006).

    [16] Urrutia A, Goicoechea J, Ricchiuti A L et al. Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating[J]. Sensors and Actuators B: Chemical, 227, 135-141(2016).

    [17] Dandapat K, Tripathi S M, Chinifooroshan Y et al. Compact and cost-effective temperature-insensitive bio-sensor based on long-period fiber gratings for accurate detection of E. coli bacteria in water[J]. Optics Letters, 41, 4198-4201(2016).

    [18] Costa R Z V, Kamikawachi R C, Muller M et al. Thermal characteristics of long-period gratings 266 nm UV-point-by-point induced[J]. Optics Communications, 282, 816-823(2009).

    [19] Martinez-Rios A, Monzon-Hernandez D, Torres-Gomezc I et al. Long Period fibre gratings[M]. Yasin M, Harun S M, Arof H. Fiber optic sensors, 275-294(2012).

    [20] Davis D D, Gaylord T K, Glytsis E N et al. Long-period fibre grating fabrication with focused CO2 laser pulses[J]. Electronics Letters, 34, 302-303(1998).

    [21] Kim B H, Park Y, Ahn T J et al. Residual stress relaxation in the core of optical fiber by CO2 laser irradiation[J]. Optics Letters, 26, 1657-1659(2001).

    [22] Wang Y P, Rao Y J, Ran Z L et al. A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses[J]. IEEE Photonics Technology Letters, 15, 251-253(2003).

    [23] Rao Y J, Wang Y P, Ran Z L et al. Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses[J]. Journal of Lightwave Technology, 21, 1320(2003).

    [24] Wang Y P, Xiao L M, Wang D N et al. Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity[J]. Optics Letters, 31, 3414-3416(2006).

    [25] Wang Y P, Wang D N, Jin W et al. Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber[J]. Applied Physics Letters, 89, 151105(2006).

    [26] Liu Y, Chiang K S. CO2 laser writing of long-period fiber gratings in optical fibers under tension[J]. Optics Letters, 33, 1933-1935(2008).

    [27] Zou F, Liu Y Q, Deng C L et al. Refractive index sensitivity of nano-film coated long-period fiber gratings[J]. Optics Express, 23, 1114-1124(2015).

    [28] Zhao Y H, Wang W, Liu Y Q et al. Spectral and sensing performance of long-period fiber gratings at 2 μm waveband[J]. Journal of Lightwave Technology, 40, 855-862(2022).

    [29] Oh S, Lee K R, Paek U C et al. Fabrication of helical long-period fiber gratings by use of a CO2 laser[J]. Optics Letters, 29, 1464-1466(2004).

    [30] Zhang L, Liu Y Q, Zhao Y H et al. High sensitivity twist sensor based on helical long-period grating written in two-mode fiber[J]. IEEE Photonics Technology Letters, 28, 1629-1632(2016).

    [31] Kopp V I, Churikov V M, Singer J et al. Chiral fiber gratings[J]. Science, 305, 74-75(2004).

    [32] Cao X B, Liu Y Q, Zhang L et al. Characteristics of chiral long-period fiber gratings written in the twisted two-mode fiber by CO2 laser[J]. Applied Optics, 56, 5167-5171(2017).

    [33] Jiang C, Liu Y Q, Zhao Y H et al. Helical long-period gratings inscribed in polarization-maintaining fibers by CO2 laser[J]. Journal of Lightwave Technology, 37, 889-896(2019).

    [34] Inoue G, Wang P, Li H P. Flat-top band-rejection filter based on two successively-cascaded helical fiber gratings[J]. Optics Express, 24, 5442-5447(2016).

    [35] Zhu C L, Zhao H, Wang P et al. Enhanced flat-top band-rejection filter based on reflective helical long-period fiber gratings[J]. IEEE Photonics Technology Letters, 29, 964-966(2017).

    [36] Fu C L, Liu S, Wang Y et al. High-order orbital angular momentum mode generator based on twisted photonic crystal fiber[J]. Optics Letters, 43, 1786-1789(2018).

    [37] Fu C L, Liu S, Bai Z Y et al. Orbital angular momentum mode converter based on helical long period fiber grating inscribed by hydrogen-oxygen flame[J]. Journal of Lightwave Technology, 36, 1683-1688(2018).

    [38] Zhang Y, Bai Z Y, Fu C L et al. Polarization-independent orbital angular momentum generator based on a chiral fiber grating[J]. Optics Letters, 44, 61-64(2019).

    [39] Ren K L, Ren L Y, Liang J et al. Online fabrication scheme of helical long-period fiber grating for liquid-level sensing[J]. Applied Optics, 55, 9675-9679(2016).

    [40] Ren K L, Ren L Y, Liang J et al. Online and efficient fabrication of helical long-period fiber gratings[J]. IEEE Photonics Technology Letters, 29, 1175-1178(2017).

    [41] Kondo Y, Nouchi K, Mitsuyu T et al. Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses[J]. Optics Letters, 24, 646-648(1999).

    [42] Fertein E, Przygodzki C, Delbarre H et al. Refractive-index changes of standard telecommunication fiber through exposure to femtosecond laser pulses at 810 cm[J]. Applied Optics, 40, 3506-3508(2001).

    [43] Hindle F, Fertein E, Przygodzki C et al. Inscription of long-period gratings in pure silica and Germano-silicate fiber cores by femtosecond laser irradiation[J]. IEEE Photonics Technology Letters, 16, 1861-1863(2004).

    [44] Liao C R, Wang Y, Wang D N et al. Femtosecond laser inscribed long-period gratings in all-solid photonic bandgap fibers[J]. IEEE Photonics Technology Letters, 22, 425-427(2010).

    [45] Wolf A A, Dostovalov A V, Lobach I A et al. Femtosecond laser inscription of long-period fiber gratings in a polarization-maintaining fiber[J]. Journal of Lightwave Technology, 33, 5178-5183(2015).

    [46] Hwang I K, Yun S H, Kim B Y. Long-period fiber gratings based on periodic microbends[J]. Optics Letters, 24, 1263-1265(1999).

    [47] Esposito F, Ranjan R, Campopiano S et al. Arc-induced long period gratings from standard to polarization-maintaining and photonic crystal fibers[J]. Sensors, 18, 918(2018).

    [48] Rego G, Okhotnikov O, Dianov E et al. High-temperature stability of long-period fiber gratings produced using an electric arc[J]. Journal of Lightwave Technology, 19, 1574(2001).

    [49] Kato Y, Seikai S, Tateda M. Arc-fusion splicing of single-mode fibers. 1: optimum splice conditions[J]. Applied Optics, 21, 1332-1336(1982).

    [50] Colaço C, Caldas P, del Villar I et al. Arc-induced long-period fiber gratings in the dispersion turning points[J]. Journal of Lightwave Technology, 34, 4584-4590(2016).

    [51] Iadicicco A, Ranjan R, Esposito F et al. Arc-induced long period gratings in polarization-maintaining panda fiber[J]. IEEE Photonics Technology Letters, 29, 1533-1536(2017).

    [52] Savin S, Digonnet M J, Kino G S et al. Tunable mechanically induced long-period fiber gratings[J]. Optics Letters, 25, 710-712(2000).

    [53] Lim J H, Lee K S, Kim J C et al. Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure[J]. Optics Letters, 29, 331-333(2004).

    [54] Pudo D, Mägi E C, Eggleton B J. Long-period gratings in chalcogenide fibers[J]. Optics Express, 14, 3763-3766(2006).

    [55] Jin Y X, Chan C C, Zhang Y F et al. Mechanically induced long-period fiber grating in side-hole single-mode fiber for temperature and refractive sensing[J]. Optics Communications, 283, 1303-1306(2010).

    [56] Li S H, Mo Q, Hu X et al. Controllable all-fiber orbital angular momentum mode converter[J]. Optics Letters, 40, 4376-4379(2015).

    [57] Blake J N, Kim B Y, Shaw H J. Fiber-optic modal coupler using periodic microbending[J]. Optics Letters, 11, 177-179(1986).

    [58] Lin C Y, Wang L A. Loss-tunable long period fibre grating made from etched corrugation structure[J]. Electronics Letters, 35, 1872-1873(1999).

    [59] Chiang K S, Liu Y Q, Ng M N et al. Analysis of etched long-period fibre grating and its response to external refractive index[J]. Electronics Letters, 36, 966-967(2000).

    [60] Chiang C C, Tsai L. Perfectly notched long-period fiber grating filter based on ICP dry etching technique[J]. Optics Letters, 37, 193-195(2012).

    [61] Cui Z Q, Zhang W G, Liu F et al. Asymmetrically corrugated long-period gratings by burning fiber coating and etching cladding[J]. IEEE Photonics Technology Letters, 25, 1961-1964(2013).

    [62] Del Villar I, Cruz J L, Socorro A B et al. Sensitivity optimization with cladding-etched long period fiber gratings at the dispersion turning point[J]. Optics Express, 24, 17680-17685(2016).

    [63] Yoon M S, Park S, Han Y G. Simultaneous measurement of strain and temperature by using a micro-tapered fiber grating[J]. Journal of Lightwave Technology, 30, 1156-1160(2012).

    [64] Bock W J, Chen J, Mikulic P et al. Pressure sensing using periodically tapered long-period gratings written in photonic crystal fibres[J]. Measurement Science and Technology, 18, 3098-3102(2007).

    [65] Pilla P, Manzillo P F, Giordano M et al. Spectral behavior of thin film coated cascaded tapered long period gratings in multiple configurations[J]. Optics Express, 16, 9765-9780(2008).

    [66] Yin G L, Wang Y P, Liao C R et al. Long period fiber gratings inscribed by periodically tapering a fiber[J]. IEEE Photonics Technology Letters, 26, 698-701(2014).

    [67] Shao L Y, Zhao J, Dong X Y et al. Long-period grating fabricated by periodically tapering standard single-mode fiber[J]. Applied Optics, 47, 1549-1552(2008).

    [68] Ren K L, Ren L Y, Liang J et al. Highly strain and bending sensitive microtapered long-period fiber gratings[J]. IEEE Photonics Technology Letters, 29, 1085-1088(2017).

    [69] Kong X D, Ren K L, Ren L Y et al. Tunable wavelength-selective coupler based on microtapered long-period fiber gratings[J]. IEEE Photonics Technology Letters, 30, 821-824(2018).

    [70] Porraz-Culebro T E, Martinez-Rios A, Toral-Acosta D et al. Characteristics of LPFGs written by a CO2-laser glass processing system[J]. Journal of Lightwave Technology, 37, 1301-1309(2019).

    [71] Fujimaki M, Ohki Y, Brebner J L et al. Fabrication of long-period optical fiber gratings by use of ion implantation[J]. Optics Letters, 25, 88-89(2000).

    [72] von Bibra M L, Roberts A, Canning J. Fabrication of long-period fiber gratings by use of focused ion-beam irradiation[J]. Optics Letters, 26, 765-767(2001).

    [73] Hodzic V, Orloff J, Davis C C. Periodic structures on biconically tapered optical fibers using ion beam milling and boron implantation[J]. Journal of Lightwave Technology, 22, 1610(2004).

    [74] Kim B Y, Blake J N, Engan H E et al. All-fiber acousto-optic frequency shifter[J]. Optics Letters, 11, 389-391(1986).

    [75] Birks T A, Russell P S J, Culverhouse D O. The acousto-optic effect in single-mode fiber tapers and couplers[J]. Journal of Lightwave Technology, 14, 2519-2529(1996).

    [76] Kim H S, Yun S H, Kwang I K et al. All-fiber acousto-optic tunable Notch filter with electronically controllable spectral profile[J]. Optics Letters, 22, 1476-1478(1997).

    [77] Yeom D I, Steinvurzel P, Eggleton B J et al. Tunable acoustic gratings in solid-core photonic bandgap fiber[J]. Optics Express, 15, 3513-3518(2007).

    [78] Zhang W D, Huang L G, Wei K Y et al. High-order optical vortex generation in a few-mode fiber via cascaded acoustically driven vector mode conversion[J]. Optics Letters, 41, 5082-5085(2016).

    [79] Zhang W D, Huang L G, Wei K Y et al. Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave[J]. Optics Express, 24, 10376-10384(2016).

    [80] Ivanov O V, Wang L A. Wavelength shifts of cladding-mode resonance in corrugated long-period fiber gratings under torsion[J]. Applied Optics, 42, 2264-2272(2003).

    [81] Gonzalez D A, Jauregui C, Quintela A. Torsion-induced effects on UV long-period fiber gratings[J]. Proceedings of SPIE, 5502, 192-195(2004).

    [82] Shi L L, Zhu T, Fan Y N et al. Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings[J]. Optics Communications, 284, 5299-5302(2011).

    [83] Araujo S G V H C, de Almeida J M M M, Saraiva C M T et al. Mach-Zehnder interferometers based on long period fiber grating coated with titanium dioxide for refractive index sensing[J]. Journal of Lightwave Technology, 37, 4584-4589(2019).

    [84] Choi H Y, Kim M J, Lee B H. All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber[J]. Optics Express, 15, 5711-5720(2007).

    [85] Dong X Y, Yang X F, Shum P et al. Tunable WDM filter with 0.8-nm channel spacing using a pair of long-period fiber gratings[J]. IEEE Photonics Technology Letters, 17, 795-797(2005).

    [86] Zou F. Research on sensing characteristics of long-period fiber grating coated with high index nano-film[D](2016).

    [87] Smietana M, Bock W J, Mikulic P et al. Increasing sensitivity of arc-induced long-period gratings: pushing the fabrication technique toward its limits[J]. Measurement Science and Technology, 22, 015201(2011).

    [88] James S W, Khaliq S, Tatam R P. Enhanced sensitivity fibre optic long period grating temperature sensor[C], 139-142(2002).

    [89] Yin S Z, Chung K W, Zhu X. A highly sensitive long period grating based tunable filter using a unique double-cladding layer structure[J]. Optics Communications, 188, 301-305(2001).

    [90] Zou F, Liu Y Q, Zhu S et al. Temperature sensitivity enhancement of the nano-film coated long-period fiber gratings[J]. IEEE Sensors Journal, 16, 2460-2465(2016).

    [91] Wang Q, Du C, Zhang J M et al. Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating[J]. Optics Communications, 377, 89-93(2016).

    [92] Wang S Y, Ma Y W, Geng T et al. Compact fiber strain sensor fabricated by a CO2 laser[J]. Optics Letters, 45, 4156-4159(2020).

    [93] Zhou Y W, Gao K, Huang R et al. Temperature and stress tuning characteristics of long-period gratings imprinted in Panda fiber[J]. IEEE Photonics Technology Letters, 15, 1728-1730(2003).

    [94] Allsop T, Dubov M, Martinez A et al. Bending characteristics of fiber long-period gratings with cladding index modified by femtosecond laser[J]. Journal of Lightwave Technology, 24, 3147-3154(2006).

    [95] Jin L, Jin W, Ju J. Directional bend sensing with a CO2-laser-inscribed long period grating in a photonic crystal fiber[J]. Journal of Lightwave Technology, 27, 4884-4891(2009).

    [96] Zhou Q, Zhang W G, Chen L et al. Bending vector sensor based on a sector-shaped long-period grating[J]. IEEE Photonics Technology Letters, 27, 713-716(2015).

    [97] Li Y P, Zhang W G, Wang S et al. Bending vector sensor based on a pair of opposite tilted long-period fiber gratings[J]. IEEE Photonics Technology Letters, 29, 224-227(2017).

    [98] Huang L, Meng X Y, Zhao Y H et al. Temperature-insensitive directional bending sensors based on the interlaced tilted long-period gratings[J]. Optics Communications, 447, 18-23(2019).

    [99] Zhang Y S, Zhang W G, Chen L et al. Concave-lens-like long-period fiber grating bidirectional high-sensitivity bending sensor[J]. Optics Letters, 42, 3892-3895(2017).

    [100] Wang Y P, Rao Y J. Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously[J]. Electronics Letters, 40, 164-166(2004).

    [101] Huang L, Jiang C, Zhao X Y et al. Fabrication and sensing characteristics of 2 μm long period fiber grating written in double cladding fiber by CO2 laser[C](2019).

    [102] Zhang L, Liu Y Q, Cao X B et al. High sensitivity chiral long-period grating sensors written in the twisted fiber[J]. IEEE Sensors Journal, 16, 4253-4257(2016).

    [103] Poole C D, Townsend C D, Nelson K T. Helical-grating two-mode fiber spatial-mode coupler[J]. Journal of Lightwave Technology, 9, 598-604(1991).

    [104] Jiang C, Liu Y Q, Huang L et al. Double cladding fiber chiral long-period grating-based directional torsion sensor[J]. IEEE Photonics Technology Letters, 31, 1522-1525(2019).

    [105] Xu C C, Liu Y Q, Jiang C et al. Characteristics of helical long-period gratings written in different SMFs by CO2-laser[C](2018).

    [106] Cao X B, Tian D D, Liu Y Q et al. Sensing characteristics of helical long-period gratings written in the double-clad fiber by CO2 laser[J]. IEEE Sensors Journal, 18, 7481-7485(2018).

    [107] Pilla P, Trono C, Baldini F et al. Giant sensitivity of long period gratings in transition mode near the dispersion turning point: an integrated design approach[J]. Optics Letters, 37, 4152-4154(2012).

    [108] Kakarantzas G, Dimmick T E, Birks T A et al. Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers[J]. Optics Letters, 26, 1137-1139(2001).

    [109] Iadicicco A, Campopiano S, Giordano M et al. Spectral behavior in thinned long period gratings: effects of fiber diameter on refractive index sensitivity[J]. Applied Optics, 46, 6945-6952(2007).

    [110] Martinez-Rios A, Monzon-Hernandez D, Torres-Gomez I. Highly sensitive cladding-etched arc-induced long-period fiber gratings for refractive index sensing[J]. Optics Communications, 283, 958-962(2010).

    [111] Yan Z J, Sun Z Y, Zhou K M et al. Numerical and experimental analysis of sensitivity-enhanced RI sensor based on ex-TFG in thin cladding fiber[J]. Journal of Lightwave Technology, 33, 3023-3027(2015).

    [112] Luo B B, Yan Z J, Sun Z Y et al. Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration[J]. Optics Express, 23, 32429-32440(2015).

    [113] Fu C L, Zhong X Y, Liao C R et al. Thin-core-fiber-based long-period fiber grating for high-sensitivity refractive index measurement[J]. IEEE Photonics Journal, 7, 7103208(2015).

    [114] Zhao Y H, Liu Y Q, Zhou C et al. Sensing characteristics of long-period fiber gratings written in thinned cladding fiber[J]. IEEE Sensors Journal, 16, 1217-1223(2016).

    [115] del Villar I, Partridge M, Rodriguez W E et al. Sensitivity enhancement in low cutoff wavelength long-period fiber gratings by cladding diameter reduction[J]. Sensors, 17, 2094(2017).

    [116] Rees N D, James S W, Tatam R P et al. Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays[J]. Optics Letters, 27, 686-688(2002).

    [117] Davies E, Viitala R, Salomäki M et al. Sol-gel derived coating applied to long-period gratings for enhanced refractive index sensing properties[J]. Journal of Optics A: Pure and Applied Optics, 11, 015501(2009).

    [118] Coelho L, Santos J L, Viegas D et al. Fabrication and characterization of metal oxide-coated long-period fiber gratings[J]. Journal of Lightwave Technology, 34, 2533-2539(2016).

    [119] Cusano A, Iadicicco A, Pilla P et al. Mode transition in high refractive index coated long period gratings[J]. Optics Express, 14, 19-34(2006).

    [120] del Villar I, Achaerandio M, Matías I R et al. Deposition of overlays by electrostatic self-assembly in long-period fiber gratings[J]. Optics Letters, 30, 720-722(2005).

    [121] del Villar I, Matias I R, Arregui F J. Influence on cladding mode distribution of overlay deposition on long-period fiber gratings[J]. Journal of the Optical Society of America A, 23, 651-658(2006).

    [122] Zou F, Liu Y Q, Mou C B et al. Optimization of refractive index sensitivity in nanofilm-coated long-period fiber gratings near the dispersion turning point[J]. Journal of Lightwave Technology, 38, 889-897(2020).

    [123] Wang Y L, Liu Y Q, Zou F et al. Humidity sensor based on a long-period fiber grating coated with polymer composite film[J]. Sensors, 19, 2263(2019).

    [124] Zhang N M Y, Dong X Y, Shum P P et al. Magnetic field sensor based on magnetic-fluid-coated long-period fiber grating[J]. Journal of Optics, 17, 065402(2015).

    [125] Jiang C, Liu Y Q, Mou C B et al. Fiber vector magnetometer based on polarization-maintaining fiber long-period grating with ferrofluid nanoparticles[J]. Journal of Lightwave Technology, 40, 2494-2502(2022).

    [126] Sáez-Rodríguez D, Cruz J L, Diez A et al. Modulation of coaxial modal interferometers based on long period gratings in double cladding fibers[J]. Optics Express, 15, 10929-10934(2007).

    [127] Wysocki P F, Judkins J B, Espindola R P et al. Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter[J]. IEEE Photonics Technology Letters, 9, 1343-1345(1997).

    [128] Rao Y J, Zhu T, Ran Z L et al. Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication[J]. Optics Communications, 229, 209-221(2004).

    [129] Rao Y J, Hu A Z, Niu Y C. A novel dynamic LPFG gain equalizer written in a bend-insensitive fiber[J]. Optics Communications, 244, 137-140(2005).

    [130] Zhu T, Rao Y J, Wang J L. All-fiber dynamic gain equalizer based on a twisted long-period grating written by high-frequency CO2 laser pulses[J]. Applied Optics, 46, 375-378(2007).

    [131] Gu X J. Wavelength-division multiplexing isolation fiber filter and light source using cascaded long-period fiber gratings[J]. Optics Letters, 23, 509-510(1998).

    [132] Qian J R, Chen H F. Gain flattening fibre filters using phase-shifted long period fibre gratings[J]. Electronics Letters, 34, 1132-1133(1998).

    [133] Chen L R. Design of flat-top bandpass filters based on symmetric multiple phase-shifted long-period fiber gratings[J]. Optics Communications, 205, 271-276(2002).

    [134] Zhu Y N, Shum P, Lu C et al. EDFA gain flattening using phase-shifted long-period grating[J]. Microwave and Optical Technology Letters, 37, 153-157(2003).

    [135] Navruz I, Altuncu A. Optimization of phase shifted long-period fiber gratings for multiband rejection filters[J]. Journal of Lightwave Technology, 26, 2155-2161(2008).

    [136] Shin W, Yu B A, Noh Y C et al. Bandwidth tunable band rejection filter based on helicoidal fiber grating pair of opposite helicities[J]. Optics Letters, 32, 1214-1216(2007).

    [137] Kim H, Bae J, Chun J. Synthesis of flat-top bandpass filters using two-band rejection long-period fiber gratings[J]. IEEE Photonics Technology Letters, 19, 1466-1468(2007).

    [138] Zhu T, Shi C H, Rao Y J et al. All-fiber bandwidth-tunable band-rejection filter based on a composite grating induced by CO2 laser pulses[J]. Optics Express, 17, 16750-16755(2009).

    [139] Zhu T, Rao Y J, Song Y et al. Highly-sensitive temperature-independent strain sensor based on a long-period fiber grating with a CO2-laser engraved rotary structure[J]. IEEE Photonics Technology Letters, 21, 543-545(2009).

    [140] Rao Y J, Zhu T. A novel flat-band long period grating with special index apodization induced by high frequency CO2 laser pulses[C], OWI51(2006).

    [141] Zhu C L, Zhao H, Li H P. Mode-couplings in two cascaded helical long-period fibre gratings and their application to polarization-insensitive band-rejection filter[J]. Optics Communications, 423, 81-85(2018).

    [142] Hill K O, Malo B, Vineberg K A et al. Efficient mode conversion in telecommunication fibre using externally written gratings[J]. Electronics Letters, 26, 1270-1272(1990).

    [143] Dashti P Z, Alhassen F, Lee H P. Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber[J]. Physical Review Letters, 96, 043604(2006).

    [144] Andermahr N, Fallnich C. Optically induced long-period fiber gratings for guided mode conversion in few-mode fibers[J]. Optics Express, 18, 4411-4416(2010).

    [145] Giles I, Obeysekara A, Chen R S et al. Fiber LPG mode converters and mode selection technique for multimode SDM[J]. IEEE Photonics Technology Letters, 24, 1922-1925(2012).

    [146] Bozinovic N, Golowich S, Kristensen P et al. Control of orbital angular momentum of light with optical fibers[J]. Optics Letters, 37, 2451-2453(2012).

    [147] Song D R, Park H S, Kim B Y et al. Acousto-optic excitation of all the higher-order modes in a four-mode fiber for mode-division multiplexed transmission[C], 98-99(2014).

    [148] Wang B, Zhang W G, Bai Z Y et al. CO2-laser-induced long period fiber gratings in few mode fibers[J]. IEEE Photonics Technology Letters, 27, 145-148(2015).

    [149] Dong J L, Chiang K S. Temperature-insensitive mode converters with CO2-laser written long-period fiber gratings[J]. IEEE Photonics Technology Letters, 27, 1006-1009(2015).

    [150] Zhao Y H, Liu Y Q, Zhang C Y et al. All-fiber mode converter based on long-period fiber gratings written in few-mode fiber[J]. Optics Letters, 42, 4708-4711(2017).

    [151] Zhang X H, Liu Y G, Wang Z et al. LP01-LP11a mode converters based on long-period fiber gratings in a two-mode polarization-maintaining photonic crystal fiber[J]. Optics Express, 26, 7013-7021(2018).

    [152] Zhao Y H, Liu Z Y, Liu Y Q et al. Ultra-broadband fiber mode converter based on apodized phase-shifted long-period gratings[J]. Optics Letters, 44, 5905-5908(2019).

    [153] Zhao X Y, Liu Y Q, Liu Z Y et al. All-fiber bandwidth tunable ultra-broadband mode converters based on long-period fiber gratings and helical long-period gratings[J]. Optics Express, 28, 11990-12000(2020).

    [154] Liu Z Y, Liu Y Q, Zhao X Y et al. Bandwidth optimization of cascaded long-period gratings for broadband mode conversion over 1.0-2.2 µm waveband[J]. Optics Express, 28, 31882-31892(2020).

    [155] Bergh R A, Lefevre H C, Shaw H J. Single-mode fiber-optic polarizer[J]. Optics Letters, 5, 479-481(1980).

    [156] Hosaka T, Okamoto K, Edahiro T. Fabrication of single-mode fiber-type polarizer[J]. Optics Letters, 8, 124-126(1983).

    [157] Wang A, Arya V, Nasta M H et al. Optical fiber polarizer based on highly birefringent single-mode fiber[J]. Optics Letters, 20, 279-281(1995).

    [158] Ortega B, Dong L, Liu W F et al. High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers[J]. IEEE Photonics Technology Letters, 9, 1370-1372(1997).

    [159] Ramachandran S, Das M, Wang Z et al. High extinction, broadband polarisers using long-period fibre gratings in few-mode fibres[J]. Electronics Letters, 38, 1327-1328(2002).

    [160] Wang Y P, Xiao L M, Wang D N et al. In-fiber polarizer based on a long-period fiber grating written on photonic crystal fiber[J]. Optics Letters, 32, 1035-1037(2007).

    [161] Xue L L, Yang L, Xu H X et al. A novel all-fiber broadband circular polarizer[C](2010).

    [162] Yang L, Xue L L, Li C et al. Adiabatic circular polarizer based on chiral fiber grating[J]. Optics Express, 19, 2251-2256(2011).

    [163] Yan Z J, Zhou K M, Zhang L. In-fiber linear polarizer based on UV-inscribed 45° tilted grating in polarization maintaining fiber[J]. Optics Letters, 37, 3819-3821(2012).

    [164] Chen W T, Wang L A. Optical coupling between single-mode fibres by utilising long-period fibre gratings[J]. Electronics Letters, 35, 421-423(1999).

    [165] Grubsky V, Starodubov D S, Feinberg J. Wavelength-selective coupler and add-drop multiplexer using long-period fiber gratings[C], 28-30(2000).

    [166] Chiang K S, Liu Y Q, Ng M N et al. Coupling between two parallel long-period fibre gratings[J]. Electronics Letters, 36, 1408-1409(2000).

    [167] Chiang K S, Chan F Y M, Ng M N. Analysis of two parallel long-period fiber gratings[J]. Journal of Lightwave Technology, 22, 1358-1366(2004).

    [168] Liu Y Q, Liu Q, Chiang K S. Optical coupling between a long-period fiber grating and a parallel tilted fiber Bragg grating[J]. Optics Letters, 34, 1726-1728(2009).

    [169] Liu Y Q, Chiang K S. Broad-band optical coupler based on evanescent-field coupling between three parallel long-period fiber gratings[J]. IEEE Photonics Technology Letters, 18, 229-231(2006).

    [170] Liu Y Q, Chiang K S, Liu Q. Symmetric 3×3 optical coupler using three parallel long-period fiber gratings[J]. Optics Express, 15, 6494-6499(2007).

    [171] Han Y G, Lee S B, Kim C S et al. Tunable optical add-drop multiplexer based on long-period fiber gratings for coarse wavelength division multiplexing systems[J]. Optics Letters, 31, 703-705(2006).

    [172] Zhu Y N, Lu C, Lacquet B M et al. Wavelength-tunable add/drop multiplexer for dense wavelength division multiplexing using long-period gratings and fiber stretchers[J]. Optics Communications, 208, 337-344(2002).

    [173] Chen X, Li A, Ye J et al. Reception of mode-division multiplexed superchannel via few-mode compatible optical add/drop multiplexer[J]. Optics Express, 20, 14302-14307(2012).

    [174] Fang L, Jia H Z. Mode add/drop multiplexers of LP02 and LP03 modes with two parallel combinative long-period fiber gratings[J]. Optics Express, 22, 11488-11497(2014).

    [175] Zhao H, Li H P. Advances on mode-coupling theories, fabrication techniques, and applications of the helical long-period fiber gratings: a review[J]. Photonics, 8, 106(2021).

    [176] Ma C, Wang J, Yuan L B. Review of helical long-period fiber gratings[J]. Photonics, 8, 193(2021).

    [177] Wang Z, Tu J J, Gao S C et al. Transmission and generation of orbital ANGULAR momentum modes in optical fibers[J]. Photonics, 8, 246(2021).

    [178] Fu C L, Wang Y P, Liu S et al. Recent progress in fabrications and applications of heating-induced long period fiber gratings[J]. Sensors, 19, 4473(2019).

    [179] Rego G, Caldas P, Ivanov O V. Arc-induced long-period fiber gratings at INESC TEC. part I: fabrication, characterization and mechanisms of formation[J]. Sensors, 21, 4914(2021).

    [180] Rego G, Caldas P, Ivanov O V. Arc-induced long-period fiber gratings at INESC TEC. part II: properties and applications in optical communications and sensing[J]. Sensors, 21, 5914(2021).

    [181] Puttnam B J, Rademacher G, Luís R S. Space-division multiplexing for optical fiber communications[J]. Optica, 8, 1186-1203(2021).

    [182] Zhao Y H, Liu Y Q. Few-mode fiber long-period gratings: from mode conversion to high sensitivity fiber-optic sensing[J]. Journal of Applied Sciences, 38, 310-338(2020).

    [183] Agrawal G P[M]. Fiber-optic communication systems(2021).

    Yunqi Liu, Chen Jiang, Zuyao Liu, Xinyi Zhao. Long-Period Fiber Gratings[J]. Laser & Optoelectronics Progress, 2023, 60(9): 0900001
    Download Citation