• Journal of Semiconductors
  • Vol. 44, Issue 8, 082702 (2023)
Yuheng Zeng1,2,3,†,*, Zetao Ding1,2,3,†, Zunke Liu1,2,3..., Wei Liu1,3, Mingdun Liao1,3, Xi Yang1,2,3, Zhiqin Ying1,3, Jingsong Sun1,3, Jiang Sheng1,2,3, Baojie Yan1,2,3, Haiyan He4, Chunhui Shou4, Zhenhai Yang1,3,** and Jichun Ye1,2,3,***|Show fewer author(s)
Author Affiliations
  • 1Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, CAS, Ningbo 315201, China
  • 4Zhejiang Energy Group R & D, Hangzhou 310003, China
  • show less
    DOI: 10.1088/1674-4926/44/8/082702 Cite this Article
    Yuheng Zeng, Zetao Ding, Zunke Liu, Wei Liu, Mingdun Liao, Xi Yang, Zhiqin Ying, Jingsong Sun, Jiang Sheng, Baojie Yan, Haiyan He, Chunhui Shou, Zhenhai Yang, Jichun Ye. Efficiency-loss analysis of monolithic perovskite/silicon tandem solar cells by identifying the patterns of a dual two-diode model’s current-voltage curves[J]. Journal of Semiconductors, 2023, 44(8): 082702 Copy Citation Text show less
    References

    [1] A De Vos. Detailed balance limit of the efficiency of tandem solar cells. J Phys D: Appl Phys, 13, 839(1980).

    [2] W Shockley, H J Queisser. J Appl Phys, 32, 510(1961).

    [3] S Schäfer, R Brendel. Accurate calculation of the absorptance enhances efficiency limit of crystalline silicon solar cells with lambertian light trapping. IEEE J Photovolt, 8, 1156(2018).

    [4] S P Bremner, M Y Levy, C B Honsberg. Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method. Prog Photovolt, 16, 225(2008).

    [5] H P Shen, D Walter, Y L Wu et al. Monolithic perovskite/Si tandem solar cells: Pathways to over 30% efficiency. Adv Energy Mater, 10, 1902840(2020).

    [6] Helmholtz-Zentrum-Berlin . World record back at HZB: Tandem solar cell achieves 32.5 percent efficiency(2022).

    [7] K Yoshikawa, H Kawasaki, W Yoshida et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy, 2, 17032(2017).

    [8] R Peibst, M Rienäcker, Y Larionova et al. Towards 28%-efficient Si single-junction solar cells with better passivating POLO junctions and photonic crystals. Sol Energy Mater Sol Cells, 238, 111560(2022).

    [9] W Shockley. The theory of p-n junctions in semiconductors and p-n junction transistors. Bell Syst Tech J, 28, 435(1949).

    [10] A Luque, S Hegedus. Handbook of photovoltaic science and engineering. John Wiley & Sons(2011).

    [11] K R McIntosh. Lumps, Humps and Bumps: Three Detrimental E Ects in the Current-Voltage Curve of Silicon Solar Cells. University of New South Wales(2001).

    [12] A Bauer, J Hanisch, E Ahlswede. An effective single solar cell equivalent circuit model for two or more solar cells connected in series. IEEE J Photovolt, 4, 340(2014).

    [13] C Domínguez, I Antón, G Sala. Multijunction solar cell model for translating I-V characteristics as a function of irradiance, spectrum, and cell temperature. Prog Photovolt, 18, 272(2010).

    [14] F Lang, E Köhnen, J Warby et al. Revealing fundamental efficiency limits of monolithic perovskite/silicon tandem photovoltaics through subcell characterization. ACS Energy Lett, 6, 3982(2021).

    [15] Y Agarwal, B Das, A J Dutta et al. Numerical simulation of tunneling effect in high-efficiency perovskite/silicon tandem solar cell.. 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), 1318(2021).

    [16] C Blaga, G Christmann, M Boccard et al. Palliating the efficiency loss due to shunting in perovskite/silicon tandem solar cells through modifying the resistive properties of the recombination junction. Sustainable Energy Fuels, 5, 2036(2021).

    [17] K Miyano, N Tripathi, M Yanagida et al. Acc Chem Res, 49, 303(2016).

    [18] E Velilla, J Cano, K Jimenez et al. Numerical analysis to determine reliable one-diode model parameters for perovskite solar cells. Energies, 11, 1963(2018).

    [19] M A Cappelletti, G A Casas, A P Cédola et al. Study of the reverse saturation current and series resistance of p-p-n perovskite solar cells using the single and double-diode models. Superlattices Microstruct, 123, 338(2018).

    [20] M Boccard, C Ballif. Influence of the subcell properties on the fill factor of two-terminal perovskite–silicon tandem solar cells. ACS Energy Lett, 5, 1077(2020).

    [21] P Tockhorn, P Wagner, L Kegelmann et al. Three-terminal perovskite/silicon tandem solar cells with top and interdigitated rear contacts. ACS Appl Energy Mater, 3, 1381(2020).

    [22] M A Green. Solar cells: operating principles, technology, and system applications. Englewood Cliffs(1982).

    [23] C T Sah, R N Noyce, W Shockley. Carrier generation and recombination in P-N junctions and P-N junction characteristics. Proc IRE, 45, 1228(1957).

    [24] C H Henry, R A Logan, F R Merritt. J Appl Phys, 49, 3530(1978).

    [25] K C Fong, K R McIntosh, A W Blakers. Accurate series resistance measurement of solar cells. Prog Photovolt, 21, 490(2013).

    [26] Y R Lin, Z H Yang, Z K Liu et al. Dual-functional carbon-doped polysilicon films for passivating contact solar cells: Regulating physical contacts while promoting photoelectrical properties. Energy Environ Sci, 14, 6406(2021).

    [27] Z Q Ying, X Yang, J M Zheng et al. Charge-transfer induced multifunctional BCP: Ag complexes for semi-transparent perovskite solar cells with a record fill factor of 80.1%. J Mater Chem A, 9, 12009(2021).

    [28] Z Q Ying, Z H Yang, J M Zheng et al. Monolithic perovskite/black-silicon tandems based on tunnel oxide passivated contacts. Joule, 6, 2644(2022).

    [29] C H Shou, J M Zheng, Q L Han et al. Optimization of tunnel-junction for perovskite/tunnel oxide passivated contact (TOPCon) tandem solar cells. Phys Status Solidi A, 218, 2100562(2021).

    [30] M A Green, A W Blakers, C R Osterwald. Characterization of high-efficiency silicon solar cells. J Appl Phys, 58, 4402(1985).

    [31] P Saint-Cast, S Werner, J Greulich et al. Analysis of the losses of industrial-type PERC solar cells. Phys Status Solidi A, 214, 1600708(2017).

    Yuheng Zeng, Zetao Ding, Zunke Liu, Wei Liu, Mingdun Liao, Xi Yang, Zhiqin Ying, Jingsong Sun, Jiang Sheng, Baojie Yan, Haiyan He, Chunhui Shou, Zhenhai Yang, Jichun Ye. Efficiency-loss analysis of monolithic perovskite/silicon tandem solar cells by identifying the patterns of a dual two-diode model’s current-voltage curves[J]. Journal of Semiconductors, 2023, 44(8): 082702
    Download Citation