• Photonics Research
  • Vol. 8, Issue 12, 1850 (2020)
Yu Tian1, Hailong Wang1, Yijia Geng2, Lili Cong1, Yu Liu2, Weiqing Xu1, and Shuping Xu1、*
Author Affiliations
  • 1State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
  • 2State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • show less
    DOI: 10.1364/PRJ.404092 Cite this Article Set citation alerts
    Yu Tian, Hailong Wang, Yijia Geng, Lili Cong, Yu Liu, Weiqing Xu, Shuping Xu. Boosting a sub-10 nm nanogap array by plasmon-triggered waveguide resonance[J]. Photonics Research, 2020, 8(12): 1850 Copy Citation Text show less
    References

    [1] Z. Liu, W. Hou, P. Pavaskar, M. Aykol, S. B. Cronin. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett., 11, 1111-1116(2011).

    [2] C. Y. Li, M. Meng, S. C. Huang, L. Li, S. R. Huang, S. Chen, L. Y. Meng, R. Panneerselvam, S. J. Zhang, B. Ren, Z. L. Yang, J. F. Li, Z. Q. Tian. ‘Smart’ Ag nanostructures for plasmon-enhanced spectroscopies. J. Am. Chem. Soc., 137, 13784-13787(2015).

    [3] Z. Yin, Y. Wang, C. Song, L. Zheng, N. Ma, X. Liu, S. Li, L. Lin, M. Li, Y. Xu, W. Li, G. Hu, Z. Fang, D. Ma. Hybrid Au-Ag nanostructures for enhanced plasmon-driven catalytic selective hydrogenation through visible light irradiation and surface-enhanced Raman scattering. J. Am. Chem. Soc., 140, 864-867(2018).

    [4] A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, H. Altug. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc. Natl. Acad. Sci. USA, 108, 11784-11789(2011).

    [5] R. Bhattacharya, C. Indukuri, N. Begam, O. H. Seeck, J. K. Basu. Plasmonic lipid bilayer membranes for enhanced detection sensitivity of biolabeling fluorophores. Adv. Funct. Mater., 25, 7233-7242(2015).

    [6] Y.-T. Chen, Y.-Y. Liao, C.-C. Chen, H.-H. Hsiao, J.-J. Huang. Surface plasmons coupled two-dimensional photonic crystal biosensors for Epstein-Barr virus protein detection. Sens. Actuators B Chem., 291, 81-88(2019).

    [7] M. H. Tahersima, M. D. Birowosuto, Z. Ma, W. C. Coley, M. D. Valentin, S. Naghibi Alvillar, I. H. Lu, Y. Zhou, I. Sarpkaya, A. Martinez, I. Liao, B. N. Davis, J. Martinez, D. Martinez-Ta, A. Guan, A. E. Nguyen, K. Liu, C. Soci, E. Reed, L. Bartels, V. J. Sorger. Testbeds for transition metal dichalcogenide photonics: efficacy of light emission enhancement in monomer vs dimer nanoscale antennae. ACS Photon., 4, 1713-1721(2017).

    [8] M. G. Lee, S. Yoo, T. Kim, Q. H. Park. Large-area plasmon enhanced two-dimensional MoS2. Nanoscale, 9, 16244-16248(2017).

    [9] Z. Q. Wu, J. L. Yang, N. K. Manjunath, Y. J. Zhang, S. R. Feng, Y. H. Lu, J. H. Wu, W. W. Zhao, C. Y. Qiu, J. F. Li, S. S. Lin. Gap-mode surface-plasmon-enhanced photoluminescence and photoresponse of MoS2. Adv. Mater., 30, 1706527(2018).

    [10] S. Nie, S. R. Emory. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 275, 1102-1106(1997).

    [11] X. Chen, C. Ciraci, D. R. Smith, S. H. Oh. Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities. Nano Lett., 15, 107-113(2015).

    [12] T. Zhang, Y. Sun, L. Hang, H. Li, G. Liu, X. Zhang, X. Lyu, W. Cai, Y. Li. Periodic porous alloyed Au-Ag nanosphere arrays and their highly sensitive SERS performance with good reproducibility and high density of hotspots. ACS Appl. Mater. Interfaces, 10, 9792-9801(2018).

    [13] D. K. Lim, K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, J. M. Nam. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol., 6, 452-460(2011).

    [14] C. Chi, F. Vargas-Lara, A. V. Tkachenko, F. W. Starr, O. Gang. Internal structure of nanoparticle dimers linked by DNA. Acs Nano, 6, 6793-6802(2012).

    [15] S. A. Belhout, F. R. Baptista, S. J. Devereux, A. W. Parker, A. D. Ward, S. J. Quinn. Preparation of polymer gold nanoparticle composites with tunable plasmon coupling and their application as SERS substrates. Nanoscale, 11, 19884-19894(2019).

    [16] H. Duan, A. I. Fernandez-Dominguez, M. Bosman, S. A. Maier, J. K. Yang. Nanoplasmonics: classical down to the nanometer scale. Nano Lett., 12, 1683-1689(2012).

    [17] A. D. Mueller, L. Y. M. Tobing, D. H. Zhang. Combining sonicated cold development and pulsed electrodeposition for high aspect ratio sub-10  nm gap gold dimers for sensing applications in the visible spectrum. Nanoscale, 10, 5221-5228(2018).

    [18] E. Menumerov, S. D. Golze, R. A. Hughes, S. Neretina. Arrays of highly complex noble metal nanostructures using nanoimprint lithography in combination with liquid-phase epitaxy. Nanoscale, 10, 18186-18194(2018).

    [19] X. Li, Y. Zhang, Z. X. Shen, H. J. Fan. Highly ordered arrays of particle-in-bowl plasmonic nanostructures for surface-enhanced Raman scattering. Small, 8, 2548-2554(2012).

    [20] F. Laible, D. A. Gollmer, S. Dickreuter, D. P. Kern, M. Fleischer. Continuous reversible tuning of the gap size and plasmonic coupling of bow tie nanoantennas on flexible substrates. Nanoscale, 10, 14915-14922(2018).

    [21] E. J. Zeman, G. C. Schatz. An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd. J. Phys. Chem., 91, 634-643(1987).

    [22] C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett., 88, 077402(2002).

    [23] A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C. Genet, P. Hellwig, T. W. Ebbesen. Enhanced Raman scattering from vibro-polariton hybrid states. Angew. Chem. Int. Ed., 54, 7971-7975(2015).

    [24] J. del Pino, J. Feist, F. J. Garcia-Vidal. Signatures of vibrational strong coupling in Raman scattering. J. Phys. Chem. C, 119, 29132-29137(2015).

    [25] Y. J. Gu, S. P. Xu, H. B. Li, S. Y. Wang, M. Cong, J. R. Lombardi, W. Q. Xu. Waveguide-enhanced surface plasmons for ultrasensitive SERS detection. J. Phys. Chem. Lett., 4, 3153-3157(2013).

    [26] S. Wang, Z. Wu, L. Chen, Y. Gu, H. Wang, S. Xu, W. Xu. Leaky mode resonance of polyimide waveguide couples metal plasmon resonance for surface-enhanced Raman scattering. J. Phys. Chem. C, 119, 24942-24949(2015).

    [27] H. L. Wang, Y. Y. Wang, Y. Wang, W. Q. Xu, S. P. Xu. Modulation of hot regions in waveguide-based evanescent-field-coupled localized surface plasmons for plasmon-enhanced spectroscopy. Photon. Res., 5, 527-535(2017).

    [28] Y. Tian, H. Wang, W. Xu, Y. Liu, S. Xu. Waveguide-coupled localized surface plasmon resonance for surface-enhanced Raman scattering: antenna array as emitters. Sens. Actuators B Chem., 280, 144-150(2019).

    [29] Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, M. Hong. Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope. Nat. Commun., 2, 218(2011).

    [30] Y. Yan, C. Xing, Y. Jia, Y. Zeng, Y. Zhao, Y. Jiang. Self-assembled dielectric microsphere array enhanced Raman scattering for large-area and ultra-long working distance confocal detection. Opt. Express, 23, 25854-25865(2015).

    [31] L. Yang, Y. Yan, Q. Wang, Y. Zeng, F. Liu, L. Li, Y. Zhao, Y. Jiang. Sandwich-structure-modulated photoluminescence enhancement of wide bandgap semiconductors capping with dielectric microsphere arrays. Opt. Express, 25, 6000-6014(2017).

    [32] D. B. Hu, Z. M. Qi. Refractive-index-enhanced Raman spectroscopy and absorptiometry of ultrathin film overlaid on an optical waveguide. J. Phys. Chem. C, 117, 16175-16181(2013).

    [33] X. M. Wan, D. F. Lu, R. Gao, J. Cheng, Z. M. Qi. Metal-clad waveguide resonance sensor using a mesoporous TiO2 thin film as the chemical sensitive core layer. J. Phys. Chem. C, 121, 19173-19181(2017).

    [34] H. Masuda, K. Yasui, K. Nishio. Fabrication of ordered arrays of multiple nanodots using anodic porous alumina as an evaporation mask. Adv. Mater., 12, 1031-1033(2000).

    [35] M. Frederiksen, D. S. Sutherland. Direct modification of colloidal hole-masks for locally ordered hetero-assemblies of nanostructures over large areas. Nanoscale, 6, 731-735(2014).

    [36] Q. Hao, H. Huang, X. Fan, Y. Yin, J. Wang, W. Li, T. Qiu, L. Ma, P. K. Chu, O. G. Schmidt. Controlled patterning of plasmonic dimers by using an ultrathin nanoporous alumina membrane as a shadow mask. ACS Appl. Mater. Interfaces, 9, 36199-36205(2017).

    [37] Y. Liu, S. Xu, B. Tang, Y. Wang, J. Zhou, X. Zheng, B. Zhao, W. Xu. Note: Simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scattering. Rev. Sci. Instrum., 81, 036105(2010).

    [38] S. Y. Ding, E. M. You, Z. Q. Tian, M. Moskovits. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev., 46, 4042-4076(2017).

    [39] B. Dong, W. Zhang, Z. Li, M. Sun. Remote excitation surface plasmon and consequent enhancement of surface-enhanced Raman scattering using evanescent wave propagating in quasi-one-dimensional MoO3 ribbon dielectric waveguide. Plasmonics, 6, 189-193(2010).

    [40] C. Y. Tsai, J. W. Lin, C. Y. Wu, P. T. Lin, T. W. Lu, P. T. Lee. Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode. Nano Lett., 12, 1648-1654(2012).

    Yu Tian, Hailong Wang, Yijia Geng, Lili Cong, Yu Liu, Weiqing Xu, Shuping Xu. Boosting a sub-10 nm nanogap array by plasmon-triggered waveguide resonance[J]. Photonics Research, 2020, 8(12): 1850
    Download Citation