• Acta Optica Sinica
  • Vol. 41, Issue 14, 1428003 (2021)
Yaqiong Zhang1, Wenjuan Zhang2, Zhengchao Chen2, and Haiwei Li3、*
Author Affiliations
  • 1Key Laboratory of Satellite Remote Sensing for National Environmental Protection, Center for Satellite Application on Ecology and Environment, Ministry of Ecology and Environment, Beijing 100094, China
  • 2Airborne Remote Sensing Center, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
  • 3Key Laboratory of Spectral Imaging Technology, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, Shaanxi 710119, China
  • show less
    DOI: 10.3788/AOS202141.1428003 Cite this Article Set citation alerts
    Yaqiong Zhang, Wenjuan Zhang, Zhengchao Chen, Haiwei Li. Influence of Channel Center Wavelength Shift of the Hyperspectral Remote Sensor on Red Edge Spectra[J]. Acta Optica Sinica, 2021, 41(14): 1428003 Copy Citation Text show less
    References

    [1] Pu R L, Gong P, Biging G S et al. Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index[J]. IEEE Transactions on Geoscience and Remote Sensing, 41, 916-920(2003).

    [2] Smith K L, Steven M D, Colls J J. Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks[J]. Remote Sensing of Environment, 92, 207-217(2004).

    [3] Zhang Y H, Guo X C, Chu W D et al. Estimation model of schima superba leaf chlorophyll content based on red edge position[J]. Infrared and Laser Engineering, 42, 798-804(2013).

    [4] Li F, Miao Y X, Feng G H et al. Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices[J]. Field Crops Research, 157, 111-123(2014).

    [5] Qin Z F, Chang Q R, Shen J et al. Red edge characteristics and SPAD estimation model using hyperspectral data for rice in Ningxia irrigation zone[J]. Geomatics and Information Science of Wuhan University, 41, 1168-1175(2016).

    [6] Horler D N H, Dockray M, Barber J. The red edge of plant leaf reflectance[J]. International Journal of Remote Sensing, 4, 273-288(1983).

    [7] Curran P J, Windham W R, Gholz H L. Exploring the relationship between reflectance red edge and chlorophyll concentration in slash pine leaves[J]. Tree Physiology, 15, 203-206(1995).

    [8] Wu Y F, Hu X, Lü G H et al. Comparison of red edge parameters of winter wheat canopy under late frost stress[J]. Spectroscopy and Spectral Analysis, 34, 2190-2195(2014).

    [9] Zheng T, Liu N, Wu L et al. Estimation of chlorophyll content in potato leaves based on spectral red edge position[J]. IFAC-PapersOnLine, 51, 602-606(2018).

    [10] Li Y X, Chen X Y, Luo D et al. Effects of cuprum stress on position of red edge of maize leaf reflection hyperspectra and relations to chlorophyll content[J]. Spectroscopy and Spectral Analysis, 38, 546-551(2018).

    [11] Liu S W, Gan F P, Wang R S. The application of Hyperion data to extracting contamination information of vegetation in the Dexing copper mine, Jiangxi Province, China[J]. Remote Sensing for Land & Resources, 16, 6-10, 31-79(2004).

    [12] Feng R, Wu J W, Wang H B et al. Influence of drought stress on maize in the seedling stage on spectral characteristics at the critical developmental stage[J]. Spectroscopy and Spectral Analysis, 40, 2222-2228(2020).

    [13] Vogelmann J E, Rock B N, Moss D M. Red edge spectral measurements from sugar maple leaves[J]. International Journal of Remote Sensing, 14, 1563-1575(1993).

    [14] Green R O, Pavri B E, Chrien T G. On-orbit radiometric and spectral calibration characteristics of EO-1 Hyperion derived with an underflight of AVIRIS and in situ measurements at Salar de Arizaro, Argentina[J]. IEEE Transactions on Geoscience and Remote Sensing, 41, 1194-1203(2003).

    [15] Zhang Y C, Liu W. Compensating focusing for space hyper spectral imager’s fore optical system[J]. Chinese Optics Letters, 9, 021102(2011).

    [16] Huang W X, Zhang L M, Si X L et al. On-orbit performance evaluation of on-board calibration component of GF-5 visible and infrared multispectral imager[J]. Acta Optica Sinica, 40, 2029001(2020).

    [17] Gao B C, Montes M J, Davis C O. Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique[J]. Remote Sensing of Environment, 90, 424-433(2004).

    [18] Guanter L, Richter R, Moreno J. Spectral calibration of hyperspectral imagery using atmospheric absorption features[J]. Applied Optics, 45, 2360-2370(2006).

    [19] Zhang Y Q, Chen Z C, Zhang H et al. Spectral calibration and reflectance reconstruction for the hyperspectral data derived from HJ-1A[C], 2003-2006(2014).

    [20] Wang T X, Yan G J, Ren H Z et al. Retrieval of spectral characteristics of hyperspectral sensor and retrieval of reflectance spectra[J]. Spectroscopy and Spectral Analysis, 30, 2714-2718(2010).

    [21] Zhang M, Wei W, Zhang Y N et al. On-orbit automated calibration of Hyperion hyperspectral remote sensor[J]. Acta Optica Sinica, 39, 0528002(2019).

    [22] Feng X, Han C P, Zou Y P et al. On-orbit spectral calibration algorithm of infrared Fourier transform spectrometer[J]. Acta Optica Sinica, 39, 0630002(2019).

    [23] Liu Y N, Sun D X, Liang J et al. Overview of ZY-1-02D satellite AHSI on-orbit performance and stability[J]. Spacecraft Engineering, 29, 93-97(2020).

    [24] Miller J R, Hare E W, Wu J. Quantitative characterization of the vegetation red edge reflectance 1. an inverted-Gaussian reflectance model[J]. International Journal of Remote Sensing, 11, 1755-1773(1990).

    Yaqiong Zhang, Wenjuan Zhang, Zhengchao Chen, Haiwei Li. Influence of Channel Center Wavelength Shift of the Hyperspectral Remote Sensor on Red Edge Spectra[J]. Acta Optica Sinica, 2021, 41(14): 1428003
    Download Citation