• Opto-Electronic Engineering
  • Vol. 45, Issue 10, 170653 (2018)
Li Weiwei*, Huang Yizhong, and Luo Zhengqian
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.12086/oee.2018.170653 Cite this Article
    Li Weiwei, Huang Yizhong, Luo Zhengqian. Composite two-dimensional material GO-MoS2-based passively mode-locked Erbium-doped fiber laser[J]. Opto-Electronic Engineering, 2018, 45(10): 170653 Copy Citation Text show less
    References

    [1] Sugioka K, Cheng Y. Ultrafast lasers—reliable tools for advanced materials processing[J]. Light: Science & Applications, 2014, 3(4): e149.

    [2] Nguyen Q T, Besnard P, Bramerie L, et al. Bidirectional 2.5-Gb/s WDM-PON using FP-LDs wavelength-locked by a multiple-wavelength seeding source based on a mode-locked laser[J]. IEEE Photonics Technology Letters, 2010, 22(11): 733–735.

    [3] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 2010, 27(11): B63–B92.

    [4] El-Sherif A F, King T A. High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator[ J]. Optics Communications, 2003, 218(4–6): 337–344.

    [5] Shi W, Fang Q, Zhu X S, et al. Fiber lasers and their applications[ J]. Applied Optics, 2014, 53(28): 6554–6568.

    [6] Du T J, Luo Z Q, Yang R H, et al. 1.2-W average-power, 700-W peak-power, 100-ps dissipative soliton resonance in a compact Er:Yb co-doped double-clad fiber laser[J]. Optics Letters, 2017, 42(3): 462–465.

    [7] Ryu H Y, Moon H S, Suh H S. Optical frequency comb generator based on actively mode-locked fiber ring laser using an acousto-optic modulator with injection-seeding[J]. Optics Express, 2007, 15(18): 11396–11401.

    [8] Hudson D D, Holman K W, Jones R J, et al. Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator[J]. Optics Letters, 2005, 30(21): 2948–2950.

    [9] Luo Z Q, Wu D D, Xu B, et al. Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers[J]. Nanoscale, 2016, 8(2): 1066–1072.

    [10] Laroche M, Gilles H, Girard S, et al. Nanosecond pulse generation in a passively Q-switched Yb-doped fiber laser by Cr4+:YAG saturable absorber[J]. IEEE Photonics Technology Letters, 2006, 18(6): 764–766.

    [11] Keller U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950): 831–838.

    [12] Zhou D P, Wei L, Dong B, et al. Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber[J]. IEEE Photonics Technology Letters, 2010, 22(1): 9–11.

    [13] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666–669.

    [14] Luo Z Q, Zhou M, Weng J, et al. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser[J]. Optics Letters, 2010, 35(21): 3709–3711.

    [15] Popa D, Sun Z, Hasan T, et al. Graphene Q-switched, tunable fiber laser[J]. Applied Physics Letters, 2011, 98(7): 073106.

    [16] Luo Z Q, Huang Y Z, Weng J, et al. 1.06 μm Q-switched ytterbium- doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber[J]. Optics Express, 2013, 21(24): 29516–29522.

    [17] Luo Z Q, Liu C, Huang Y Z, et al. Topological-insulator passively Q-switched double-clad fiber laser at 2 μm wavelength[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 0902708.

    [18] Luo Z Q, Huang Y Z, Zhong M, et al. 1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber[J]. Journal of Lightwave Technology, 2014, 32(24): 4077–4084.

    [19] Woodward R I, Kelleher E J R, Howe R C T, et al. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2)[J]. Optics Express, 2014, 22(25): 31113–31122.

    [20] Chen Y, Jiang G B, Chen S Q, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation[J]. Optics Express, 2015, 23(10): 12823–12833.

    [21] Zheng Z W, Zhao C J, Lu S B, et al. Microwave and optical saturable absorption in graphene[J]. Optics Express, 2012, 20(21): 23201–23214.

    [22] Wang S X, Yu H H, Zhang H J, et al. Broadband few-layer MoS2 saturable absorbers[J]. Advanced Materials, 2014, 26(21): 3538–3544.

    [23] Huang Y Z, Luo Z Q, Li Y Y, et al. Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber[J]. Optics Express, 2014, 22(21): 25258–25266.

    [24] Wang K P, Wang J, Fan J T, et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets[J]. ACS Nano, 2013, 7(10): 9260–9267.

    [25] Xia H D, Li H P, Lan C Y, et al. Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber[J]. Optics Express, 2014, 22(14): 17341–17348.

    [26] Liu H, Luo A P, Wang F Z, et al. Femtosecond pulse erbium- doped fiber laser by a few-layer MoS2 saturable absorber[ J]. Optics Letters, 2014, 39(15): 4591–4594.

    [27] Liu M, Zheng X W, Qi Y L, et al. Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser[J]. Optics Express, 2014, 22(19): 22841–22846.

    [28] Xu H, Wu J X, Feng Q L, et al. High responsivity and gate tunable graphene-MoS2 hybrid phototransistor[J]. Small, 2014, 10(11): 2300–2306.

    [29] Mueller T, Xia F N, Avouris P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 2010, 4(5): 297–301.

    [30] Peng J, Weng J. One-pot solution-phase preparation of a MoS2/graphene oxide hybrid[J]. Carbon, 2015, 94: 568–576.

    CLP Journals

    [1] Zhang Xin, Shu Shili, Tong Cunzhu. Research progress of Er:ZBLAN fiber lasers at the wavelength of 3 μm[J]. Opto-Electronic Engineering, 2019, 46(8): 190070

    Li Weiwei, Huang Yizhong, Luo Zhengqian. Composite two-dimensional material GO-MoS2-based passively mode-locked Erbium-doped fiber laser[J]. Opto-Electronic Engineering, 2018, 45(10): 170653
    Download Citation