• Advanced Photonics
  • Vol. 1, Issue 6, 066002 (2019)
Minh Nguyen1、†, Niko Nikolay2, Carlo Bradac1, Mehran Kianinia1, Evgeny A. Ekimov3、4, Noah Mendelson1, Oliver Benson2, and Igor Aharonovich1、*
Author Affiliations
  • 1University of Technology Sydney, School of Mathematical and Physical Sciences, Ultimo, New South Wales, Australia
  • 2Humboldt-Universität zu Berlin, AG Nanooptik, Berlin, Germany
  • 3Russian Academy of Sciences, Institute for High Pressure Physics, Moscow, Troitsk, Russia
  • 4Russian Academy of Sciences, Lebedev Physics Institute, Moscow, Russia
  • show less
    DOI: 10.1117/1.AP.1.6.066002 Cite this Article Set citation alerts
    Minh Nguyen, Niko Nikolay, Carlo Bradac, Mehran Kianinia, Evgeny A. Ekimov, Noah Mendelson, Oliver Benson, Igor Aharonovich. Photodynamics and quantum efficiency of germanium vacancy color centers in diamond[J]. Advanced Photonics, 2019, 1(6): 066002 Copy Citation Text show less
    References

    [1] M. Atatüre et al. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater., 3, 38-51(2018).

    [2] D. D. Awschalom et al. Quantum technologies with optically interfaced solid-state spins. Nat. Photonics, 12, 516-527(2018).

    [3] C. Bradac et al. Quantum nanophotonics with group IV defects in diamond. Nat. Commun., 10, 5625(2019).

    [4] M. Radulaski et al. Nanodiamond integration with photonic devices. Laser Photonics Rev., 13, 1800316(2019).

    [5] D. D. Sukachev et al. Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout. Phys. Rev. Lett., 119, 223602(2017).

    [6] M. K. Bhaskar et al. Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Phys. Rev. Lett., 118, 223603(2017).

    [7] A. Sipahigil et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science, 354, 847-850(2016).

    [8] Y.-I. Sohn et al. Controlling the coherence of a diamond spin qubit through its strain environment. Nat. Commun., 9, 2012(2018).

    [9] B. Pingault et al. Coherent control of the silicon-vacancy spin in diamond. Nat. Commun., 8, 15579(2017).

    [10] T. T. Tran et al. Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry. Sci. Adv., 5, eaav9180(2019).

    [11] A. E. Rugar et al. Characterization of optical and spin properties of single tin-vacancy centers in diamond nanopillars. Phys. Rev. B, 99, 205417(2019).

    [12] L. J. Rogers et al. Multiple intrinsically identical single-photon emitters in the solid state. Nat. Commun., 5, 4739(2014).

    [13] L. J. Rogers et al. Electronic structure of the negatively charged silicon-vacancy center in diamond. Phys. Rev. B, 89, 235101(2014).

    [14] N. Elke et al. Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J. Phys., 13, 025012(2011).

    [15] Y. Zhou et al. Coherent control of a strongly driven silicon vacancy optical transition in diamond. Nat. Commun., 8, 14451(2017).

    [16] T. Iwasaki et al. Tin-vacancy quantum emitters in diamond. Phys. Rev. Lett., 119, 253601(2017).

    [17] T. Iwasaki et al. Germanium-vacancy single color centers in diamond. Sci. Rep., 5, 12882(2015).

    [18] M. E. Trusheim et al. Transform-limited photons from a tin-vacancy spin in diamond(2019).

    [19] S. D. Tchernij et al. Single-photon-emitting optical centers in diamond fabricated upon Sn implantation. ACS Photonics, 4, 2580-2586(2017).

    [20] G. Thiering, A. Gali. Ab initio magneto-optical spectrum of group-IV vacancy color centers in diamond. Phys. Rev. X, 8, 021063(2018).

    [21] M. E. Trusheim et al. Lead-related quantum emitters in diamond. Phys. Rev. B, 99, 075430(2019).

    [22] S. D. Tchernij et al. Single-photon emitters in lead-implanted single-crystal diamond. ACS Photonics, 5, 4864-4871(2018).

    [23] V. G. Ralchenko et al. Observation of the Ge-vacancy color center in microcrystalline diamond films. Bull. Lebedev Phys. Inst., 42, 165-168(2015).

    [24] V. Sedov et al. Growth of polycrystalline and single-crystal CVD diamonds with bright photoluminescence of Ge-V color centers using germane GeH4 as the dopant source. Diamond Relat. Mater., 90, 47-53(2018). https://doi.org/10.1016/j.diamond.2018.10.001

    [25] E. A. Ekimov et al. Effect of Si, Ge and Sn dopant elements on structure and photoluminescence of nano- and microdiamonds synthesized from organic compounds. Diamond Relat. Mater., 93, 75-83(2019).

    [26] Y. Zhou et al. Direct writing of single germanium vacancy center arrays in diamond. New J. Phys., 20, 125004(2018).

    [27] K. Bray et al. Single crystal diamond membranes and photonic resonators containing germanium vacancy color centers. ACS Photonics, 5, 4817-4822(2018).

    [28] H. Siampour et al. On-chip excitation of single germanium vacancies in nanodiamonds embedded in plasmonic waveguides. Light Sci. Appl., 7, 61(2018).

    [29] W. Lukosz, R. E. Kunz. Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface. Opt. Commun., 20, 195-199(1977).

    [30] X. Brokmann et al. Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission. Phys. Rev. Lett., 93, 107403(2004).

    [31] E. A. Ekimov et al. High-pressure synthesis of nanodiamonds from adamantane myth or reality?. ChemNanoMat, 4, 269-273(2018).

    [32] M. A. Lieb, J. M. Zavislan, L. Novotny. Single-molecule orientations determined by direct emission pattern imaging. J. Opt. Soc. Am. B, 21, 1210-1215(2004).

    [33] C. Hepp et al. Electronic structure of the silicon vacancy color center in diamond. Phys. Rev. Lett., 112, 036405(2014).

    [34] M. W. Doherty et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep., 528, 1-45(2013).

    [35] Y.-K. Tzeng et al. Vertical-substrate MPCVD epitaxial nanodiamond growth. Nano Lett., 17, 1489-1495(2017).

    [36] E. Neu, M. Agio, C. Becher. Photophysics of single silicon vacancy centers in diamond: implications for single photon emission. Opt. Express, 20, 19956-19971(2012).

    [37] I. I. Vlasov et al. Molecular-sized fluorescent nanodiamonds. Nat. Nanotechol., 9, 54-58(2014).

    [38] C. Bradac et al. Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nat. Nanotechol., 5, 345-349(2010).

    [39] L. Li et al. Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Lett., 15, 1493-1497(2015).

    [40] S. Castelletto et al. Imaging and quantum-efficiency measurement of chromium emitters in diamond. Phys. Rev. Lett., 105, 217403(2010).

    Minh Nguyen, Niko Nikolay, Carlo Bradac, Mehran Kianinia, Evgeny A. Ekimov, Noah Mendelson, Oliver Benson, Igor Aharonovich. Photodynamics and quantum efficiency of germanium vacancy color centers in diamond[J]. Advanced Photonics, 2019, 1(6): 066002
    Download Citation