• Laser & Optoelectronics Progress
  • Vol. 60, Issue 7, 0700004 (2023)
Qi Han, He Liu, Fengyun Guo, and Yong Zhang*
Author Affiliations
  • School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
  • show less
    DOI: 10.3788/LOP220429 Cite this Article Set citation alerts
    Qi Han, He Liu, Fengyun Guo, Yong Zhang. Research Progress on Cs2AgBiBr6 Halide Double-Perovskite Solar Cells[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0700004 Copy Citation Text show less
    References

    [1] Jena A K, Kulkarni A, Miyasaka T. Halide perovskite photovoltaics: background, status, and future prospects[J]. Chemical Reviews, 119, 3036-3103(2019).

    [2] Qiu L B, He S S, Ono L K et al. Scalable fabrication of metal halide perovskite solar cells and modules[J]. ACS Energy Letters, 4, 2147-2167(2019).

    [3] Eaton S W, Lai M L, Gibson N A et al. Lasing in robust cesium lead halide perovskite nanowires[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 1993-1998(2016).

    [4] Wei W, Zhang Y, Xu Q et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging[J]. Nature Photonics, 11, 315-321(2017).

    [5] Quan L N, Rand B P, Friend R H et al. Perovskites for next-generation optical sources[J]. Chemical Reviews, 119, 7444-7477(2019).

    [6] Ding N, Wang N, Liu S et al. Research progress on doped perovskite materials[J]. Laser & Optoelectronics Progress, 58, 1516011(2021).

    [7] Kojima A, Teshima K, Shirai Y et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 131, 6050-6051(2009).

    [8] Jung E H, Jeon N J, Park E Y et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)[J]. Nature, 567, 511-515(2019).

    [9] Green M A, Dunlop E D, Hohl-Ebinger J et al. Solar cell efficiency tables (Version 55)[J]. Progress in Photovoltaics: Research and Applications, 28, 3-15(2020).

    [10] Xiao Z W, Song Z N, Yan Y F. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives[J]. Advanced Materials, 31, e1803792(2019).

    [11] Yang Y, You J B. Make perovskite solar cells stable[J]. Nature, 544, 155-156(2017).

    [12] Lee B, Stoumpos C C, Zhou N J et al. Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor[J]. Journal of the American Chemical Society, 136, 15379-15385(2014).

    [13] Li W Z, Li J W, Li J L et al. Addictive-assisted construction of all-inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K[J]. Journal of Materials Chemistry A, 4, 17104-17110(2016).

    [14] Song T B, Yokoyama T, Aramaki S et al. Performance enhancement of lead-free tin-based perovskite solar cells with reducing atmosphere-assisted dispersible additive[J]. ACS Energy Letters, 2, 897-903(2017).

    [15] Chen M, Ju M G, Garces H F et al. Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation[J]. Nature Communications, 10, 16(2019).

    [16] Ke W J, Stoumpos C C, Kanatzidis M G. “unleaded” perovskites: status quo and future prospects of tin-based perovskite solar cells[J]. Advanced Materials, 31, e1803230(2019).

    [17] Krishnamoorthy T, Ding H, Yan C et al. Lead-free germanium iodide perovskite materials for photovoltaic applications[J]. Journal of Materials Chemistry A, 3, 23829-23832(2015).

    [18] Tai Q D, Guo X Y, Tang G Q et al. Antioxidant grain passivation for air-stable tin-based perovskite solar cells[J]. Angewandte Chemie, 58, 806-810(2019).

    [19] Diau E W G, Jokar E, Rameez M. Strategies to improve performance and stability for tin-based perovskite solar cells[J]. ACS Energy Letters, 4, 1930-1937(2019).

    [20] Yang Z J, Zhong M Y, Liang Y Q et al. SnO2-C60 pyrrolidine tris-acid (CPTA) as the electron transport layer for highly efficient and stable planar Sn-based perovskite solar cells[J]. Advanced Functional Materials, 29, 1903621(2019).

    [21] Bekenstein Y, Dahl J C, Huang J M et al. The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions[J]. Nano Letters, 18, 3502-3508(2018).

    [22] Garcã­a-Espejo G, Rodrã­guez-Padrã³n D, Luque R et al. Mechanochemical synthesis of three double perovskites: Cs2AgBiBr6, (CH3NH3)2TlBiBr6 and Cs2AgSbBr6[J]. Nanoscale, 11, 16650-16657(2019).

    [23] Zhao X G, Yang J H, Fu Y H et al. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation[J]. Journal of the American Chemical Society, 139, 2630-2638(2017).

    [24] Zhang L, Wang K, Zou B. Bismuth halide perovskite-like materials: current opportunities and challenges[J]. ChemSusChem, 12, 1612-1630(2019).

    [25] Jin Q, Jiang S, Zhao Y et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold[J]. Nature Materials, 18, 62-68(2019).

    [26] Song X J, Liang C, Gong H et al. Photosensitizer-conjugated albumin-polypyrrole nanoparticles for imaging-guided in vivo photodynamic/photothermal therapy[J]. Small, 11, 3932-3941(2015).

    [27] Hamdeh U H, Nelson R D, Ryan B J et al. Solution-processed BiI3 thin films for photovoltaic applications: improved carrier collection via solvent annealing[J]. Chemistry of Materials, 28, 6567-6574(2016).

    [28] Mali S S, Kim H, Kim D H et al. Anti-solvent assisted crystallization processed methylammonium bismuth iodide cuboids towards highly stable lead-free perovskite solar cells[J]. ChemistrySelect, 2, 1578-1585(2017).

    [29] Park B W, Philippe B, Zhang X L et al. Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application[J]. Advanced Materials, 27, 6806-6813(2015).

    [30] Gill D, Bhumla P, Kumar M et al. High-throughput screening to modulate electronic and optical properties of alloyed Cs2AgBiCl6 for enhanced solar cell efficiency[J]. Journal of Physics: Materials, 4, 025005(2021).

    [31] Zheng H Y, Tang Z X, Liang P et al. Intrinsic point defects in halide double perovskite Cs2NaBiCl6 insight from first-principles[J]. Thin Solid Films, 732, 138781(2021).

    [32] Li P Z, Gao W Y, Ran C X et al. Post-treatment engineering of vacuum-deposited Cs2NaBiI6 double perovskite film for enhanced photovoltaic performance[J]. Physica Status Solidi (a), 216, 1900567(2019).

    [33] Volonakis G, Haghighirad A A, Milot R L et al. Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap[J]. The Journal of Physical Chemistry Letters, 8, 772-778(2017).

    [34] Zhou J, Xia Z G, Molokeev M S et al. Composition design, optical gap and stability investigations of lead-free halide double perovskite Cs2AgInCl6[J]. Journal of Materials Chemistry A, 5, 15031-15037(2017).

    [35] Zhou J, Rong X M, Molokeev M S et al. Exploring the transposition effects on the electronic and optical properties of Cs2AgSbCl6 via a combined computational-experimental approach[J]. Journal of Materials Chemistry A, 6, 2346-2352(2018).

    [36] Karmakar A, Dodd M S, Agnihotri S et al. Cu(II)-doped Cs2SbAgCl6 double perovskite: a lead-free, low-bandgap material[J]. Chemistry of Materials, 30, 8280-8290(2018).

    [37] McClure E T, Ball M R, Windl W et al. Cs2AgBiX6 (X=Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors[J]. Chemistry of Materials, 28, 1348-1354(2016).

    [38] Slavney A H, Hu T, Lindenberg A M et al. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications[J]. Journal of the American Chemical Society, 138, 2138-2141(2016).

    [39] Yang J, Bao C X, Ning W H et al. Stable, high-sensitivity and fast-response photodetectors based on lead-free Cs2AgBiBr6 double perovskite films[J]. Advanced Optical Materials, 1801732(2019).

    [40] Dang Y Y, Tong G Q, Song W T et al. Interface engineering strategies towards Cs2AgBiBr6 single-crystalline photodetectors with good Ohmic contact behaviours[J]. Journal of Materials Chemistry C, 8, 276-284(2020).

    [41] Yin L X, Wu H D, Pan W C et al. Controlled cooling for synthesis of Cs2AgBiBr6 single crystals and its application for X-ray detection[J]. Advanced Optical Materials, 7, 1900491(2019).

    [42] Steele J A, Pan W C, Martin C et al. Photophysical pathways in highly sensitive Cs2AgBiBr6 double-perovskite single-crystal X-ray detectors[J]. Advanced Materials, 30, 1804450(2018).

    [43] Pan W C, Wu H D, Luo J J et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit[J]. Nature Photonics, 11, 726-732(2017).

    [44] Zhang Z Z, Liang Y Q, Huang H L et al. Stable and highly efficient photocatalysis with lead-free double-perovskite of Cs2AgBiBr6[J]. Angewandte Chemie, 58, 7263-7267(2019).

    [45] Gao W Y, Ran C X, Xi J et al. High-quality Cs2AgBiBr6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2.2 % efficiency[J]. ChemPhysChem, 19, 1696-1700(2018).

    [46] Wang M, Zeng P, Bai S et al. High-quality sequential-vapor-deposited Cs2AgBiBr6 thin films for lead-free perovskite solar cells[J]. Solar RRL, 2, 1800217(2018).

    [47] Ahmad R, Nutan G V, Singh D et al. Colloidal lead-free Cs2AgBiBr6 double perovskite nanocrystals: synthesis, uniform thin-film fabrication, and application in solution-processed solar cells[J]. Nano Research, 14, 1126-1134(2021).

    [48] Wang B N, Li N, Yang L et al. Chlorophyll derivative-sensitized TiO2 electron transport layer for record efficiency of Cs2AgBiBr6 double perovskite solar cells[J]. Journal of the American Chemical Society, 143, 2207-2211(2021).

    [49] Volonakis G, Filip M R, Haghighirad A A et al. Lead-free halide double perovskites via heterovalent substitution of noble metals[J]. The Journal of Physical Chemistry Letters, 7, 1254-1259(2016).

    [50] Fang H H, Li X Z, Zhou Y K et al. Ultrafast spectroscopy of hot carriers in perovskites[J]. Acta Optica Sinica, 41, 0823009(2021).

    [51] Vigneshwaran M, Ohta T, Iikubo S et al. Facile synthesis and characterization of sulfur doped low bandgap bismuth based perovskites by soluble precursor route[J]. Chemistry of Materials, 28, 6436-6440(2016).

    [52] Wong-Ng W, Kaduk J A, Luong M et al. X-ray diffraction study and powder patterns of double-perovskites Sr2RSbO6 (R = Pr, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er, Tm, Yb, and Lu)[J]. Powder Diffraction, 29, 371-378(2014).

    [53] Lozhkina O A, Murashkina A A, Elizarov M S et al. Microstructural analysis and optical properties of the halide double perovskite Cs2BiAgBr6 single crystals[J]. Chemical Physics Letters, 694, 18-22(2018).

    [54] Filip M R, Hillman S, Haghighirad A A et al. Band gaps of the lead-free halide double perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from theory and experiment[J]. The Journal of Physical Chemistry Letters, 7, 2579-2585(2016).

    [55] Cheng P F, Wu T, Li Y J et al. Combining theory and experiment in the design of a lead-free ((CH3NH3)2AgBiI6) double perovskite[J]. New Journal of Chemistry, 41, 9598-9601(2017).

    [56] Kieslich G, Sun S J, Cheetham A K. An extended Tolerance Factor approach for organic-inorganic perovskites[J]. Chemical Science, 6, 3430-3433(2015).

    [57] Chen S S, Lee K C, Zhang Z G et al. An indacenodithiophene-quinoxaline polymer prepared by direct arylation polymerization for organic photovoltaics[J]. Macromolecules, 49, 527-536(2016).

    [58] Li C H, Lu X G, Ding W Z et al. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites[J]. Acta Crystallographica Section B Structural Science, 64, 702-707(2008).

    [59] Bartel C J, Sutton C, Goldsmith B R et al. New tolerance factor to predict the stability of perovskite oxides and halides[J]. Science Advances, 5, eaav0693(2019).

    [60] Su J, Mou T, Wen J et al. First-principles study on the structure, electronic, and optical properties of Cs2AgBiBr6-xClx mixed-halide double perovskites[J]. Journal of Physical Chemistry C, 124, 5371-5377(2020).

    [61] Schade L, Wright A D, Johnson R D et al. Structural and optical properties of Cs2AgBiBr6 double perovskite[J]. ACS Energy Letters, 4, 299-305(2019).

    [62] Hoye R L Z, Eyre L, Wei F X et al. Fundamental carrier lifetime exceeding 1 µs in Cs2AgBiBr6 double perovskite[J]. Advanced Materials Interfaces, 5, 1800464(2018).

    [63] Zhang Z, Cao D, Huang Z J et al. Gamma-ray detection using Bi-poor Cs2AgBiBr6 double perovskite single crystals[J]. Advanced Optical Materials, 9, 2001575(2021).

    [64] Shi D, Adinolfi V, Comin R et al. Solar cells. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 347, 519-522(2015).

    [65] Pantaler M, Cho K T, Queloz V I E et al. Hysteresis-free lead-free double-perovskite solar cells by interface engineering[J]. ACS Energy Letters, 3, 1781-1786(2018).

    [66] Mazzio K A, Luscombe C K. The future of organic photovoltaics[J]. Chemical Society Reviews, 44, 78-90(2015).

    [67] Chang C Y, Huang W K, Chang Y C et al. A solution-processed n-doped fullerene cathode interfacial layer for efficient and stable large-area perovskite solar cells[J]. Journal of Materials Chemistry A, 4, 640-648(2016).

    [68] Li C, Wang F Z, Xu J et al. Efficient perovskite/fullerene planar heterojunction solar cells with enhanced charge extraction and suppressed charge recombination[J]. Nanoscale, 7, 9771-9778(2015).

    [69] Saliba M, Orlandi S, Matsui T et al. A molecularly engineered hole-transporting material for efficient perovskite solar cells[J]. Nature Energy, 4, 640-648(2016).

    [70] Gu Z W, Chen F, Zhang X Q et al. Novel planar heterostructure perovskite solar cells with CdS nanorods array as electron transport layer[J]. Solar Energy Materials and Solar Cells, 140, 396-404(2015).

    [71] Yan W B, Li Y L, Li Y et al. Stable high-performance hybrid perovskite solar cells with ultrathin polythiophene as hole-transporting layer[J]. Nano Research, 8, 2474-2480(2015).

    [72] Wu W Q, Huang F Z, Chen D H et al. Thin films of dendritic anatase titania nanowires enable effective hole-blocking and efficient light-harvesting for high-performance mesoscopic perovskite solar cells[J]. Advanced Functional Materials, 25, 3264-3272(2015).

    [73] Jeon N J, Noh J H, Yang W S et al. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 517, 476-480(2015).

    [74] Manser J S, Christians J A, Kamat P V. Intriguing optoelectronic properties of metal halide perovskites[J]. Chemical Reviews, 116, 12956-13008(2016).

    [75] Zhao Y X, Zhu K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications[J]. Chemical Society Reviews, 45, 655-689(2016).

    [76] Zhao Y X, Zhu K. Solution chemistry engineering toward high-efficiency perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 5, 4175-4186(2014).

    [77] Zhang W, Eperon G E, Snaith H J. Metal halide perovskites for energy applications[J]. Nature Energy, 1, 16048(2016).

    [78] Luo J J, Wang X M, Li S R et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites[J]. Nature, 563, 541-545(2018).

    [79] Ahn C W, Jo J H, Kim J C et al. Highly ordered lead-free double perovskite halides by design[J]. Journal of Materiomics, 6, 651-660(2020).

    [80] Yang B, Pan W C, Wu H D et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging[J]. Nature Communications, 10, 1989(2019).

    [81] Dunlap-Shohl W A, Zhou Y Y, Padture N P et al. Synthetic approaches for halide perovskite thin films[J]. Chemical Reviews, 119, 3193-3295(2019).

    [82] Jung Y S, Hwang K, Heo Y J et al. Progress in scalable coating and roll-to-roll compatible printing processes of perovskite solar cells toward realization of commercialization[J]. Advanced Optical Materials, 6, 1701182(2018).

    [83] Greul E, Petrus M L, Binek A et al. Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications[J]. Journal of Materials Chemistry A, 5, 19972-19981(2017).

    [84] Eperon G E, Burlakov V M, Docampo P et al. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells[J]. Advanced Functional Materials, 24, 151-157(2014).

    [85] Wang Q, Shao Y C, Dong Q F et al. Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process[J]. Energy & Environmental Science, 7, 2359-2365(2014).

    [86] Zhao Y X, Zhu K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells[J]. The Journal of Physical Chemistry C, 118, 9412-9418(2014).

    [87] Kim H B, Choi H, Jeong J et al. Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells[J]. Nanoscale, 6, 6679-6683(2014).

    [88] Wu C C, Zhang Q H, Liu Y et al. The dawn of lead-free perovskite solar cell: highly stable double perovskite Cs2AgBiBr6 film[J]. Advanced Science, 5, 1700759(2018).

    [89] Li X, Bi D Q, Yi C Y et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells[J]. Science, 353, 58-62(2016).

    [90] Ding B, Gao L L, Liang L S et al. Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method[J]. ACS Applied Materials & Interfaces, 8, 20067-20073(2016).

    [91] Xiu J W, Shao Y F, Chen L X et al. Defining the composition and electronic structure of large-scale and single-crystalline like Cs2AgBiBr6 films fabricated by capillary-assisted dip-coating method[J]. Materials Today Energy, 12, 186-197(2019).

    [92] Riede M, Uhrich C, Widmer J et al. Efficient organic tandem solar cells based on small molecules[J]. Advanced Functional Materials, 21, 3019-3028(2011).

    [93] Liu M Z, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 501, 395-398(2013).

    [94] Klipfel N, Haris M P U, Kazim S et al. Structural and photophysical investigation of single-source evaporation of CsFAPbI3 and FAPbI3 perovskite thin films[J]. Journal of Materials Chemistry C, 10, 10075-10082(2022).

    [95] Fan P, Gu D, Liang G X et al. High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition[J]. Scientific Reports, 6, 29910(2016).

    [96] Longo G, Gil-Escrig L, Degen M J et al. Perovskite solar cells prepared by flash evaporation[J]. Chemical Communications, 51, 7376-7378(2015).

    [97] Fan P, Peng H X, Zheng Z H et al. Single-source vapor-deposited Cs2AgBiBr6 thin films for lead-free perovskite solar cells[J]. Nanomaterials, 9, 1760(2019).

    [98] Burwig T, Guc M, Izquierdo-Roca V et al. Synthesis and crystal structure evolution of Co-evaporated Cs2AgBiBr6 thin films upon thermal treatment[J]. The Journal of Physical Chemistry C, 124, 9249-9255(2020).

    [99] Creutz S E, Crites E N, de Siena M C et al. Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors: synthesis and anion exchange to access new materials[J]. Nano Letters, 18, 1118-1123(2018).

    [100] Yang B, Chen J S, Yang S Q et al. Lead-free silver-bismuth halide double perovskite nanocrystals[J]. Angewandte Chemie International Edition, 57, 5359-5363(2018).

    [101] Rajagopal A, Yao K, Jen A K Y. Toward perovskite solar cell commercialization: a perspective and research roadmap based on interfacial engineering[J]. Advanced Materials, 30, e1800455(2018).

    [102] Yang X Q, Wang W, Ran R et al. Recent advances in Cs2AgBiBr6-based halide double perovskites as lead-free and inorganic light absorbers for perovskite solar cells[J]. Energy & Fuels, 34, 10513-10528(2020).

    [103] Igbari F, Wang R, Wang Z K et al. Composition stoichiometry of Cs2AgBiBr6 films for highly efficient lead-free perovskite solar cells[J]. Nano Letters, 19, 2066-2073(2019).

    [104] Sirtl M T, Armer M, Reb L K et al. Optoelectronic properties of Cs2AgBiBr6 thin films: the influence of precursor stoichiometry[J]. ACS Applied Energy Materials, 3, 11597-11609(2020).

    [105] Zhao D D, Wang B Z, Liang C et al. Facile deposition of high-quality Cs2AgBiBr6 films for efficient double perovskite solar cells[J]. Science China Materials, 63, 1518-1525(2020).

    [106] Ning W H, Wang F, Wu B et al. Long electron-hole diffusion length in high-quality lead-free double perovskite films[J]. Advanced Materials, 30, e1706246(2018).

    [107] Pai N, Lu J F, Wang M C et al. Enhancement of the intrinsic light harvesting capacity of Cs2AgBiBr6 double perovskite via modification with sulphide[J]. Journal of Materials Chemistry A, 8, 2008-2020(2020).

    [108] Luo T, Zhang Y L, Chang X M et al. Dual interfacial engineering for efficient Cs2AgBiBr6 based solar cells[J]. Journal of Energy Chemistry, 53, 372-378(2021).

    [109] Li J B, Duan J L, Du J et al. Alkali metal ion-regulated lead-free, all-inorganic double perovskites for HTM-free, carbon-based solar cells[J]. ACS Applied Materials & Interfaces, 12, 47408-47415(2020).

    [110] Wang B N, Yang L, Dall’Agnese C X et al. Photoactive Zn-chlorophyll hole transporter-sensitized lead-free Cs2AgBiBr6 perovskite solar cells[J]. Solar RRL, 4, 2000166(2020).

    [111] Li Z X, Wang P, Ma C et al. Single-layered MXene nanosheets doping TiO2 for efficient and stable double perovskite solar cells[J]. Journal of the American Chemical Society, 143, 2593-2600(2021).

    [112] Yang X Q, Chen Y H, Liu P Y et al. Simultaneous power conversion efficiency and stability enhancement of Cs2AgBiBr6 lead-free inorganic perovskite solar cell through adopting a multifunctional dye interlayer[J]. Advanced Functional Materials, 30, 2001557(2020).

    [113] Liu G H, Wu C C, Zhang Z H et al. Ultraviolet-protective transparent photovoltaics based on lead-free double perovskites[J]. Solar RRL, 4, 2000056(2020).

    [114] Hadi M A, Islam M N, Podder J. Indirect to direct band gap transition through order to disorder transformation of Cs2AgBiBr6via creating antisite defects for optoelectronic and photovoltaic applications[J]. RSC Advances, 12, 15461-15469(2022).

    [115] Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 32, 510-519(1961).

    [116] Jaffe A, Lin Y, Karunadasa H I. Halide perovskites under pressure: accessing new properties through lattice compression[J]. ACS Energy Letters, 2, 1549-1555(2017).

    [117] Li Q, Wang Y G, Pan W C et al. High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite[J]. Angewandte Chemie, 56, 15969-15973(2017).

    [118] Fan R D, Huang Y, Wang L G et al. The progress of interface design in perovskite-based solar cells[J]. Advanced Energy Materials, 6, 1600460(2016).

    [119] Tress W, Yavari M, Domanski K et al. Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells[J]. Energy & Environmental Science, 11, 151-165(2018).

    [120] Yang B, Hong F, Chen J S et al. Colloidal synthesis and charge-carrier dynamics of Cs2AgSb1-yBiyX6 (X: Br, Cl; 0 ≤y ≤1) double perovskite nanocrystals[J]. Angewandte Chemie, 58, 2278-2283(2019).

    Qi Han, He Liu, Fengyun Guo, Yong Zhang. Research Progress on Cs2AgBiBr6 Halide Double-Perovskite Solar Cells[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0700004
    Download Citation