• Chinese Optics Letters
  • Vol. 22, Issue 1, 012501 (2024)
Tao Xun1、2、*, Xinyue Niu1, Langning Wang1、2、**, Bin Zhang1、2, Jinmei Yao1、2, Yimu Yu1、2, Hanwu Yang1、2, Jing Hou1、2, Jinliang Liu1、2, and Jiande Zhang1、2
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/COL202422.012501 Cite this Article Set citation alerts
    Tao Xun, Xinyue Niu, Langning Wang, Bin Zhang, Jinmei Yao, Yimu Yu, Hanwu Yang, Jing Hou, Jinliang Liu, Jiande Zhang. Recent progress of parameter-adjustable high-power photonic microwave generation based on wide-bandgap photoconductive semiconductors[J]. Chinese Optics Letters, 2024, 22(1): 012501 Copy Citation Text show less
    References

    [1] J. Seeds, K. J. Williams. Microwave photonics. J. Lightwave Technol., 24, 4628(2006).

    [2] J. Capmany, D. Novak. Microwave photonics combines two worlds. Nat. Photon., 1, 319(2007).

    [3] J. Yao. Arbitrary waveform generation. Nat. Photon., 4, 79(2010).

    [4] T. D. Borisova, N. F. Blagoveshchenskaya, A. S. Kalishin et al. Modification of the high-latitude ionospheric F region by high-power HF radio waves at frequencies near the fifth and sixth electron gyroharmonics. Radiophys. Quantum Electron., 58, 561(2016).

    [5] J. Zhang, X. Ge, J. Zhang et al. Research progresses on Cherenkov and transit-time high-power microwave sources at NUDT. Matter Radiat. Extremes, 1, 163(2016).

    [6] D. L. Adamy. Introduction to Electronic Warfare Modeling and Simulation(2003).

    [7] D. Marpaung, C. Roeloffzen, R. Heideman et al. Integrated microwave photonics. Laser Photon. Rev., 7, 506(2013).

    [8] L. Beaudoin, G. S. Nusinovich, G. Milikh et al. Highly efficient, megawatt-class, radio frequency source for mobile ionospheric heaters. J. Electromagn. Waves. Appl., 31, 1786(2017).

    [9] J. D. McKinney. Photonics illuminates the future of radar. Nature, 507, 310(2014).

    [10] J. Benford, J. A. Swegle, E. Schamiloglu. High Power Microwaves(2015).

    [11] R. O’Connell, C.-J. Huang, A. Karabegovic et al. Optoelectronic microwave power amplifiers. IEEE Trans. Dielectr. Electr. Insul., 14, 994(2007).

    [12] O. S. F. Zucker, P. K.-L. Yu, A. Griffin. Photoconductive switch-based HPM for airborne counter-IED applications. IEEE Trans. Plasma Sci., 42, 1285(2014).

    [13] W. Wang, L. Xia, Y. Chen et al. Research on synchronization of 15 parallel high gain photoconductive semiconductor switches triggered by high power pulse laser diodes. Appl. Phys. Lett., 106, 022108(2015).

    [14] C. Luan, J. Zhao, L. Xiao et al. All solid-state electromagnetic pulse simulator based on the 4H-SiC photoconductive semiconductor switch. Rev. Sci. Instrum., 91, 014701(2020).

    [15] M. Xu, R. Li, C. Ma et al. 1.23-ns pulsewidth of quenched high gain GaAs photoconductive semiconductor switch at 8-nJ excitation. IEEE Electron Device Lett., 37, 1147(2016).

    [16] L. Hu, J. Su, R. Qiu et al. Ultra-wideband microwave generation using a low-energy-triggered bulk gallium arsenide avalanche semiconductor switch with ultrafast switching. IEEE Trans. Electron. Devices, 65, 1308(2018).

    [17] R. Liu, A. Shang, C.-J. Chen et al. Nanostructure enabled lower on-state resistance and longer lock-on time GaAs photoconductive semiconductor switches. Opt. Lett., 46, 825(2021).

    [18] K. Dowling, Y. Dong, D. Hall et al. Pulse compression photoconductive switching using negative differential mobility. IEEE Trans. Electron. Devices, 69, 590(2021).

    [19] M. Wu, W. Shi. Study on output characteristics of 20 kV/100 ns nonlinear GaAs photoconductive semiconductor switch. IEEE Access, 11, 9197(2023).

    [20] J. Sullivan, J. Stanley. 6H-SiC photoconductive switches triggered at below bandgap wavelengths. IEEE Trans. Dielectr. Electr. Insul., 14, 980(2007).

    [21] S. E. Sampayan, P. V. Grivickas, A. M. Conway et al. Characterization of carrier behavior in photonically excited 6H silicon carbide exhibiting fast, high voltage, bulk transconductance properties. Sci. Rep., 11, 6859(2021).

    [22] S. Rakheja, L. Huang, S. Hau-Riege et al. Performance modeling of silicon carbide photoconductive switches for high-power and high-frequency applications. IEEE J. Electron Devices Soc., 8, 1118(2020).

    [23] H. Gui, W. Shi, C. Ma et al. The jitter time of GaAs photoconductive switch triggered by 532- and 1064-nm laser pulse. IEEE Photon. Technol. Lett., 27, 2001(2015).

    [24] M. E. Levinshtein, S. L. Rumyantsev, M. S. Shur. Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe(2001).

    [25] D. Koehler, T. J. Anderson, A. Khachatrian et al. High voltage GaN lateral photoconductive semiconductor switches. ECS J. Solid State Sci. Technol., 6, S3099(2017).

    [26] E. Majda-Zdancewicz, M. Suproniuk, M. Pawłowski et al. Current state of photoconductive semiconductor switch engineering. Opto-Electron. Rev., 26, 92(2018).

    [27] J. S. Sullivan. Wide bandgap extrinsic photoconductive switches(2013).

    [28] J. Huang, L. Hu, X. Yang et al. Modeling and simulation of Fe-doped GaN PCSS in high-power microwave. IEEE Trans. Electron. Devices, 70, 3489(2023).

    [29] A. Karabegovic, R. M. O’Connell, W. C. Nunnally. Photoconductive switch design for microwave applications. IEEE Trans. Dielectr. Electr. Insul., 16, 1011(2009).

    [30] J. Y. Tsao, S. Chowdhury, M. A. Hollis et al. Ultrawide-bandgap semiconductors: research opportunities and challenges. Adv. Electron. Mater., 4, 1600501(2018).

    [31] P. H. Choi, Y. P. Kim, M.-S. Kim et al. Side-illuminated photoconductive semiconductor switch based on high purity semi-insulating 4H-SiC. IEEE Trans. Electron. Devices, 68, 6216(2021).

    [32] D. Mauch, W. Sullivan, A. Bullick et al. High power lateral silicon carbide photoconductive semiconductor switches and investigation of degradation mechanisms. IEEE Trans. Plasma Sci., 43, 2021(2015).

    [33] L. Xiao, X. Yang, P. Duan et al. Effect of electron avalanche breakdown on a high-purity semi-insulating 4H-SiC photoconductive semiconductor switch under intrinsic absorption. Appl. Opt., 57, 2804(2018).

    [34] L. Zhu, L. Hu, X. Shen et al. Improved current and jitter performances of photoconductive semiconductor switch based on reduced graphene oxide/metal electrode. IEEE Electron Device Lett., 44, 289(2023).

    [35] X. Yang, L. Hu, J. Liu et al. Si3N4 passivation and side illumination of high-power photoconductive semiconductor switch based on free-standing SI-GaN. IEEE Trans. Electron. Devices, 70, 1128(2023).

    [36] Z. Feng, C. Luan, L. Xiao et al. Performance of a novel rear-triggered 4H-SiC photoconductive semiconductor switch. IEEE Trans. Electron. Devices, 70, 627(2023).

    [37] J. Wei, S. Li, L. Wang et al. Properties of switching transient in the semi-insulating GaAs photoconductive semiconductor switch with opposed contacts. IEEE Trans. Plasma Sci., 50, 3635(2022).

    [38] X. Ye, F. Zhang, S. Pan. Optical true time delay unit for multi-beamforming. Opt. Express, 23, 10002(2015).

    [39] J. Wang, R. Ashrafi, R. Adams et al. Subwavelength grating enabled on-chip ultra-compact optical true time delay line. Sci. Rep., 6, 30235(2016).

    [40] P. Zheng, C. Wang, X. Xu et al. A seven bit silicon optical true time delay line for Ka-band phased array antenna. IEEE Photon. J., 11, 5501809(2019).

    [41] R. Kumar, S. K. Raghuwanshi. Photonic generation of multiple shapes and sextupled microwave signal based on polarization modulator. IEEE Trans. Microw. Theory Tech., 69, 3875(2021).

    [42] R. Kumar, S. K. Raghuwanshi. Wavelength dependent odd frequency multiplication based on a superstructure FBG. IEEE Photon. Technol. Lett., 33, 1101(2021).

    [43] R. Kumar, S. K. Raghuwanshi. Efficient 2D optical beamforming network with sub partitioning capability based on raised cosine chirped fiber grating and Mach–Zehnder delay interferometer. IEEE Photon. J., 13, 5500411(2021).

    [44] R. Kumar, S. K. Raghuwanshi, D. Nadeem. Chirped fiber grating and specialty fiber based multiwavelength optical beamforming network for 1×8 phased array antenna in S-band. Optik, 243, 167044(2021).

    [45] Q. Wu, T. Xun, Y. Zhao et al. The test of a high-power, semi-insulating, linear-mode, vertical 6H-SiC PCSS. IEEE Trans. Electron. Devices, 66, 1837(2019).

    [46] Q. Wu, Y. Zhao, T. Xun et al. Initial test of optoelectronic high power microwave generation from 6H-SiC photoconductive switch. IEEE Electron Device Lett., 40, 1167(2019).

    [47] Y. Zhao, Q. Wu, T. Xun et al. A scalable, general purpose circuit model for vanadium compensated, semi-insulating, vertical 6H-SiC PCSS. IEEE Trans. Circuits Syst. II, Exp. Briefs, 68, 988(2021).

    [48] W. Fu, L. Wang, B. Wang et al. Investigation on the photocurrent tail of vanadium-compensated 4H–SiC for microwave application. AIP Adv., 12, 095121(2022).

    [49] X. He, B. Zhang, C. Guo et al. 4 mJ rectangular-envelope GHz-adjustable burst-mode fiber-bulk hybrid laser and second-harmonic generation. IEEE Photon. J., 13, 1501009(2021).

    [50] S. H. Chung, E. Mazur. Surgical applications of femtosecond lasers. J. Biophoton., 2, 557(2009).

    [51] H. Kalaycıoğlu, Y. B. Eldeniz, Ö. Akçaalan et al. 1 mJ pulse bursts from a Yb-doped fiber amplifier. Opt. Lett., 37, 2586(2012).

    [52] M. Nie, X. Cao, Q. Liu et al. 100 µJ pulse energy in burst-mode-operated hybrid fiber-bulk amplifier system with envelope shaping. Opt. Express, 25, 13557(2017).

    [53] T. Chen, H. Liu, W. Kong et al. Burst-mode-operated, sub-nanosecond fiber MOPA system incorporating direct seed-packet shaping. Opt. Express, 24, 20963(2016).

    [54] C. Kerse, H. Kalaycıoğlu, P. Elahi et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature, 537, 84(2016).

    [55] L. Wang, X. Chu, Q. Wu et al. Effects of high-field velocity saturation on the performance of V-doped 6H silicon-carbide photoconductive switches. IEEE J. Emerg. Sel. Top. Power Electron., 9, 4879(2021).

    [56] M. Xu, H. Dong, C. Liu et al. Investigation of an opposed-contact GaAs photoconductive semiconductor switch at 1-kHz excitation. IEEE Trans. Electron. Devices, 68, 2355(2021).

    [57] L. Hu, M. Xu, X. Li et al. Performance investigation of bulk photoconductive semiconductor switch based on reversely biased p+-i-n+ structure. IEEE Trans. Electron. Devices, 67, 4963(2020).

    [58] L. Hu, Y. Wang, M. Xu. Experimental study of recovery time of a bulk gallium arsenide avalanche semiconductor switch in low-energy-triggered mode. Electron. Lett., 55, 711(2019).

    [59] M. Xu, X. Liu, M. Li et al. Transient characteristics of interdigitated GaAs photoconductive semiconductor switch at 1-kHz excitation. IEEE Electron Device Lett., 40, 1136(2019).

    [60] X. Chu, J. Liu, T. Xun et al. MHz repetition frequency, hundreds kilowatt, and sub-nanosecond agile pulse generation based on linear 4H-SiC photoconductive semiconductor. IEEE Trans. Electron. Devices, 69, 597(2022).

    [61] X. Chu, T. Xun, L. Wang et al. 4H-SiC photoconductive semiconductor based ultra-wideband microwave generation with MHz tunable repetition rate. Electron. Lett., 58, 666(2022).

    [62] X. Chu, T. Xun, L. Wang et al. Wide-range frequency-agile microwave generation up to 10 GHz based on vanadium-compensated 4H-SiC photoconductive semiconductor switch. IEEE Electron Device Lett., 43, 1013(2022).

    [63] L. Wang, X. Chu, M. Yi et al. Vertical SiC photoconductive switch with axial optical internal reflection trap. IEEE Trans. Electron. Devices, 69, 5028(2022).

    [64] X. Niu, Q. Wu, B. Wang et al. Test of kW class photonic microwave generation using vanadium-compensated 6H-SiC PCSS and burst-mode-operation pulse laser. IEEE Photon. J., 15, 5500407(2023).

    [65] P. Cao, W. Huang, H. Guo et al. Performance of a vertical 4H-SiC photoconductive switch with AZO transparent conductive window and silver mirror reflector. IEEE Trans. Electron. Devices, 65, 2047(2018).

    [66] L. Wang, L. Zeng, F. Liu et al. Breakdown and photoconductivity enhancement by mixed reflective Al-doped ZnO/Ag electrode in vertical SiC photoconductive switch. IEEE Electron Device Lett., 44, 721(2023).

    [67] B. Wang, L. Wang, X. Niu et al. Breakdown behavior of SiC photoconductive switch with transparent electrode. AIP Adv., 12, 085210(2022).

    Data from CrossRef

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    [1] Xu Chu, Jin Meng, Haitao Wang, Danni Zhu, Yuzhang Yuan, Liyang Huang, Zhongwu Xiang, Jiangfeng Han, Bingfang Deng, Yancheng Cui, Jiahao Zhang.

    Tao Xun, Xinyue Niu, Langning Wang, Bin Zhang, Jinmei Yao, Yimu Yu, Hanwu Yang, Jing Hou, Jinliang Liu, Jiande Zhang. Recent progress of parameter-adjustable high-power photonic microwave generation based on wide-bandgap photoconductive semiconductors[J]. Chinese Optics Letters, 2024, 22(1): 012501
    Download Citation