• Journal of Inorganic Materials
  • Vol. 36, Issue 6, 579 (2021)
Ziyi LI1, Jiajia ZHANG1, Xiaoqin ZOU2, Jiayu ZUO1, Jun LI1, Yingshu LIU1、*, and David Youhong PUI3、4
Author Affiliations
  • 11. School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • 22. Institute of Chemistry, Northeast Normal University, Changchun 130024, China
  • 33. School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
  • 44. Department of Engineering, University of Minnesota, Minneapolis 55455, USA
  • show less
    DOI: 10.15541/jim20200555 Cite this Article
    Ziyi LI, Jiajia ZHANG, Xiaoqin ZOU, Jiayu ZUO, Jun LI, Yingshu LIU, David Youhong PUI. Synthesis and Gas Separation of Chabazite Zeolite Membranes[J]. Journal of Inorganic Materials, 2021, 36(6): 579 Copy Citation Text show less
    References

    [1] S LI, A CARREON M, Y ZHANG et al. Scale-up of SAPO-34 membranes for CO2/CH4 separation. Journal of Membrane Science, 352, 7-13(2010).

    [2] S NAIR, Z LAI, V NIKOLAKIS et al. Separation of close- boiling hydrocarbon mixtures by MFI and FAU membranes made by secondary growth. Microporous & Mesoporous Materials, 48, 219-228(2001).

    [3] H GU X, H DONG J, M NENOFF T et al. Synthesis of defect-free FAU-type zeolite membranes and separation for dry and moist CO2/N2 mixtures. Industrial & Engineering Chemistry Research, 44, 937-944(2005).

    [4] W ZHU, L GORA, A W C VAN DEN BERG et al. Water vapour separation from permanent gases by a zeolite-4A membrane. Journal of Membrane Science, 253, 57-66(2005).

    [5] S LI, G MARTINEK J, L FALCONER J et al. High-pressure CO2/CH4 separation using SAPO-34 membranes. Industrial & Engineering Chemistry Research, 44, 3220-3228(2005).

    [6] L MA, Y CHENG, G CAVATAIO et al. Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NOx in diesel exhaust. Chemical Engineering Journal, 225, 323-330(2013).

    [7] H KALIPCILAR, C BOWEN T, D NOBLE R et al. Synthesis and separation performance of SSZ-13 zeolite membranes on tubular supports. Chemistry of Materials, 14, 3458-3464(2002).

    [8] X ZHANG L, D JIA M, E MIN. Synthesis of SAPO-34/ceramic composite membranes. Studies in Surface Science and Catalysis, 105, 2211-2216(1997).

    [9] N YAN, H XU, W ZHANG et al. Probing locations of organic structure-directing agents (OSDAs) and host-guest interactions in CHA-type SAPO-34/44. Microporous and Mesoporous Materials, 264, 55-59(2018).

    [10] M YU, D NOBLE R, L FALCONER J. Zeolite membranes: microstructure characterization and permeation mechanisms. Accounts of Chemical Research, 44, 1196-1206(2011).

    [11] JIN-QU WANG, JIAN-HUA YANG, HUA-ZHENG LI et al. Research progress of zeolite molecular sieve membrane. Membrane Science and Technology, 34, 1-7, 42(2014).

    [12] J CARO, M NOACK. Zeolite membranes-recent developments and progress. Microporous and Mesoporous Materials, 115, 215-233(2008).

    [13] C BOWEN T, D NOBLE R, L FALCONER J. Fundamentals and applications of pervaporation through zeolite membranes. Journal of Membrane Science, 245, 1-33(2004).

    [14] N KOSINOV, C AUFFRET, C GVCVCYENER et al. High flux high-silica SSZ-13 membrane for CO2 separation. Journal of Materials Chemistry A, 2, 13083-13092(2014).

    [15] J TOTH A, B SZILAGYI, E HAAZ et al. Enhanced separation of maximum boiling azeotropic mixtures with extractive heterogeneous-azeotropic distillation. Chemical Engineering Research and Design, 147, 55-62(2019).

    [16] G CLET, L GORA, N NISHIYAMA et al. An alternative synthesis method for zeolite Y membranes. Chemical Communications, 1, 41-42(2001).

    [17] H JIANG, B ZHANG, S LIN Y et al. Synthesis of zeolite membranes. Chinese Science Bulletin, 49, 2547-2554(2004).

    [18] M HONG, S LI, F FUNKE H et al. Ion-exchanged SAPO-34 membranes for light gas separations. Microporous and Mesoporous Materials, 106, 140-146(2007).

    [19] S LI, L FALCONER J, D NOBLE R. SAPO-34 membranes for CO2/CH4 separation. Journal of Membrane Science, 241, 121-135(2004).

    [20] M SAPATSIS, M LOVALLO, T OKUBO et al. Characterization of zeolite L nanoclusters. Chemistry of Materials, 7, 1734-1741(1995).

    [21] T WU, C DIAZ M, Y ZHENG et al. Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes. Journal of Membrane Science, 473, 201-209(2015).

    [22] O CHISHOLM N, H FUNKE H, D NOBLE R et al. Carbon dioxide/alkane separations in a SSZ-13 membrane. Journal of Membrane Science, 568, 17-21(2018).

    [23] A CARREON M, S LI, L FALCONER J et al. SAPO-34 seeds and membranes prepared using multiple structure directing agents. Advanced Materials, 20, 729-732(2008).

    [24] N KOSINOV, C AUFFRET, J BORGHUIS G et al. Influence of the Si/Al ratio on the separation properties of SSZ-13 zeolite membranes. Journal of Membrane Science, 484, 140-145(2015).

    [25] M LEE, S HONG, D KIM et al. Chabazite-type zeolite membranes for effective CO2 separation: the role of hydrophobicity and defect structure. Applied Materials & Interfaces, 11, 3946-3960(2019).

    [26] S HONG, D KIM, Y JEONG et al. Healing of microdefects in SSZ-13 membranes via filling with dye molecules and its effect on dry and wet CO2 separations. Chemistry of Materials, 30, 3346-3358(2018).

    [27] Y ZHENG, N HU, H WANG et al. Preparation of steam-stable high-silica CHA (SSZ-13) membranes for CO2/CH4 and C2H4/C2H6 separation. Journal of Membrane Science, 475, 303-310(2015).

    [28] R ZHOU, H WANG, B WANG et al. Defect-patching of zeolite membranes by surface modification using siloxane polymers for CO2 separation. Industrial & Engineering Chemistry Research, 54, 7516-7523(2015).

    [29] S SONG, F GAO, Y ZHANG et al. Preparation of SSZ-13 membranes with enhanced fluxes using asymmetric alumina supports for N2/CH4 and CO2/CH4 separations. Separation and Purification Technology, 209, 946-954(2019).

    [30] B WANG, Y ZHENG, J ZHANG et al. Separation of light gas mixtures using zeolite SSZ-13 membranes. Microporous and Mesoporous Materials, 275, 191-199(2019).

    [31] X LI, Y WANG, T WU et al. High-performance SSZ-13 membranes prepared using ball-milled nanosized seeds for carbon dioxide and nitrogen separations from methane. Chinese Journal of Chemical Engineering, 28, 1285-1292(2020).

    [32] L LIANG, M ZHU, L CHEN et al. Single gas permeance performance of high silica SSZ-13 zeolite membranes. Membranes, 8, 43(2018).

    [33] J JIANG, X WANG, Y ZHANG et al. Fabrication of pure-phase CHA zeolite membranes with ball-milled seeds at low K + concentration. Microporous and Mesoporous Materials, 215, 98-108(2015).

    [34] J JIANG, L PENG, X WANG et al. Effect of Si/Al ratio in the framework on the pervaporation properties of hollow fiber CHA zeolite membranes. Microporous and Mesoporous Materials, 273, 196-202(2019).

    [35] T WU, J LUCERO, M CRAWFORD J et al. SAPO-34 membranes for xenon capture from air. Journal of Membrane Science, 573, 288-292(2019).

    [36] R VENNA S, A CARREON M. Amino-functionalized SAPO-34 membranes for CO2/CH4 and CO2/N2 separation. Langmuir, 27, 2888-2894(2011).

    [37] Z ZONG, A CARREON M. Thin SAPO-34 membranes synthesized in stainless steel autoclaves for N2/CH4 separation. Journal of Membrane Science, 524, 117-123(2017).

    [38] H FUNKE H, B TOKAY, R ZHOU et al. Spatially resolved gas permeation through SAPO-34 membranes. Journal of Membrane Science, 409, 212-221(2012).

    [39] W PING E, R ZHOU, H FUNKE H et al. Seeded-gel synthesis of SAPO-34 single channel and monolith membranes, for CO2/CH4 separations. Journal of Membrane Science, 415, 770-775(2012).

    [40] Y HUANG, L WANG, Z SONG et al. Growth of high-quality, thickness-reduced zeolite membranes towards N2/CH4 separation using high-aspect-ratio seeds. Angewandte Chemie International Edition, 54, 10843-10847(2015).

    [41] Y CHEN, Y ZHANG, C ZHANG et al. Fabrication of high-flux SAPO-34 membrane on α-Al2O3 four-channel hollow fibers for CO2 capture from CH4. Journal of CO2 Utilization, 18, 30-40(2017).

    [42] M WANG, M LI, N CHANG et al. Vapor separation of methanol-dimethyl carbonate mixture on SAPO-34 zeolite membrane. Journal of Membrane Science, 565, 311-321(2018).

    [43] N CHANG, H TANG, L BAI et al. Optimized rapid thermal processing for the template removal of SAPO-34 zeolite membranes. Journal of Membrane Science, 552, 13-21(2018).

    [44] P LIGHTFOOT, A WOODCOCK D, J MAPLE M et al. The widespread occurrence of negative thermal expansion in zeolites. Journal of Materials Chemistry, 11, 212-216(2001).

    [45] K SATO, K SUGIMOTO, N SHIMOTSUMA et al. Development of practically available up-scaled high-silica CHA-type zeolite membranes for industrial purpose in dehydration of N-methyl pyrrolidone solution. Journal of Membrane Science, 409, 82-95(2012).

    [46] I BRAUN, G SCHULZ EKLOFF, D WOHRLE et al. Synthesis of AlPO4-5 in a microwave-heated, continuous-flow, high- pressure tube reactor. Microporous and Mesoporous Materials, 23, 79-81(1998).

    [47] N HU, Y LI, S ZHONG et al. Microwave synthesis of zeolite CHA (chabazite) membranes with high pervaporation performance in absence of organic structure directing agents. Microporous and Mesoporous Materials, 228, 22-29(2016).

    [48] X LIU, S DU, B ZHANG. The seeded growth of dense and thin SAPO-34 membranes on porous α-Al2O3 substrates under microwave irradiation. Materials Letters, 91, 195-197(2013).

    [49] L CHEW T, L AHMAD A, S BHATIA. Ba-SAPO-34 membrane synthesized from microwave heating and its performance for CO2/CH4 gas separation. Chemical Engineering Journal, 171, 1053-1059(2011).

    [50] F AKHTAR, A OJUVA, K WIRAWAN S et al. Hierarchically porous binder-free silicalite-1 discs: a novel support for all- zeolite membranes. Journal of Materials Chemistry, 21, 8822-8828(2011).

    [51] Y HE, X CUI, X LIU et al. Preparation of self-supporting NaA zeolite membranes using geopolymers. Journal of Membrane Science, 447, 66-72(2013).

    [52] A STOEGER J, J CHOI, M TSAPATSIS. Rapid thermal processing and separation performance of columnar MFI membranes on porous stainless steel tubes. Energy & Environmental Science, 4, 3479-3486(2011).

    [53] U REHMAN R, Q SONG, L PENG et al. Hydrophobic modification of SAPO-34 membranes for improvement of stability under wet condition. Chinese Journal of Chemical Engineering, 27, 2397-2406(2019).

    [54] Y MU, H CHEN, H XIANG et al. Defects-healing of SAPO-34 membrane by post-synthesis modification using organosilica for selective CO2 separation. Journal of Membrane Science, 575, 80-88(2019).

    [55] B LIU, C TANG, X LI et al. High-performance SAPO-34 membranes for CO2 separations from simulated flue gas. Microporous and Mesoporous Materials, 292, 109712(2020).

    [56] N KOSINOV, C AUFFRET, V G P SRITAPHI et al. Influence of support morphology on the detemplation and permeation of ZSM-5 and SSZ-13 zeolite membranes. Microporous and Mesoporous Materials, 197, 268-277(2014).

    [57] L YU, A HOLMGREN, J HEDLUND. A novel method for fabrication of high-flux zeolite membranes on supports with arbitrary geometry. Journal of Materials Chemistry A, 7, 10325-10330(2019).

    [58] A CARREON M, S LI, L FALCONER J et al. Alumina- supported SAPO-34 membranes for CO2/CH4 separation. Journal of the American Chemical Society, 130, 5412-5413(2008).

    [59] Q LIU J, B LUO Y, G LI M et al. Synthesis of nanosized SSZ-13 zeolite and performance of its mixed matrix membrane for CO2/CH4 separation. China Petroleum Processing & Petrochemical Technology, 21, 19-26(2019).

    [60] T TAKATA, N TSUNOJI, Y TAKAMITSU et al. Nanosized CHA zeolites with high thermal and hydrothermal stability derived from the hydrothermal conversion of FAU zeolite. Microporous and Mesoporous Materials, 225, 524-533(2016).

    [61] N NAJAFI, S ASKARI, R HALLADJ. Hydrothermal synthesis of nanosized SAPO-34 molecular sieves by different combinations of multi templates. Powder Technology, 254, 324-330(2014).

    [62] H YANG, X LIU, G LU et al. Synthesis of SAPO-34 nanoplates via hydrothermal method. Microporous and Mesoporous Materials, 225, 144-153(2016).

    [63] Q SUN, N WANG, G GUO et al. Ultrafast synthesis of nano- sized zeolite SAPO-34 with excellent MTO catalytic performance. Chemical Communications, 51, 16397-16400(2015).

    [64] P KARAKILIÇ, X WANG, F KAPTEIJN et al. Defect-free high-silica CHA zeolite membranes with high selectivity for light gas separation. Journal of Membrane Science, 586, 34-43(2019).

    [65] Z JABBARI, S FATEMI, M DAVOODPOUR. Comparative study of seeding methods; dip-coating, rubbing and EPD, in SAPO-34 thin film fabrication. Advanced Powder Technology, 25, 321-330(2014).

    [66] Q HENGE, Y ZHANG, L KONG et al. High performance SSZ-13 membranes prepared at low temperature. Journal of Membrane Science, 603, 118023(2020).

    [67] C WHITE J, K DUTTA P, K SHQAU et al. Synthesis of ultrathin zeolite Y membranes and their application for separation of carbon dioxide and nitrogen gases. Langmuir, 26, 10287-10293(2010).

    [68] Z BOHSTRÖM, B ARSTAD, P LILLERUD K. Preparation of high silica chabazite with controllable particle size. Microporous and Mesoporous Materials, 195, 294-302(2014).

    [69] H VAN HEYDEN, S MINTOVA, T BEIN. Nanosized SAPO-34 synthesized from colloidal solutions. Chemistry of Materials, 20, 2956-2963(2008).

    [70] M MIYAMOTO, T NAKATANI, Y FUJIOKA et al. Verified synthesis of pure silica CHA-type zeolite in fluoride media. Microporous and Mesoporous Materials, 206, 67-74(2015).

    [71] K KIDA, Y MAETA, K YOGO. Preparation and gas permeation properties on pure silica CHA-type zeolite membranes. Journal of Membrane Science, 522, 363-370(2017).

    [72] X FENG, Z ZONG, K ELSAIDIl S et al. Kr/Xe separation over a chabazite zeolite membrane. Journal of the American Chemical Society, 138, 9791-9794(2016).

    [73] A CARREON M. Molecular sieve membranes for N2/CH4 separation. Journal of Materials Research, 33, 32-43(2018).

    [74] S LI, L FALCONER J, D NOBLE R. SAPO-34 membranes for CO2/CH4 separations: effect of Si/Al ratio. Microporous and Mesoporous Materials, 110, 310-317(2008).

    [75] J KIM S, Y LIU, S MOORE J et al. Thin hydrogen-selective SAPO-34 zeolite membranes for enhanced conversion and selectivity in propane dehydrogenation membrane reactors. Chemistry of Materials, 28, 4397-4402(2016).

    [76] E RIVERA RAMOS M, J RUIZ MERCADO G, J HERNANDEZ MALDONADO A. Separation of CO2 from light gas mixtures using ion-exchanged silicoaluminophosphate nanoporous sorbents. Industrial & Engineering Chemistry Research, 47, 5602-5610(2008).

    [77] M AVILA A, H FUNKE H, Y ZHANG et al. Concentration polarization in SAPO-34 membranes at high pressures. Journal of Membrane Science, 335, 32-36(2009).

    [78] Y ZHANG, B TOKAY, H FUNKE H et al. Template removal from SAPO-34 crystals and membranes. Journal of Membrane Science, 363, 29-35(2010).

    [79] C PENG, Z LIU, A HOORIMOTO et al. Preparation of nanosized SSZ-13 zeolite with enhanced hydrothermal stability by a two-stage synthetic method. Microporous and Mesoporous Materials, 255, 192-199(2018).

    [80] J KIM, E JANG, S HONG et al. Microstructural control of a SSZ-13 zeolite film via rapid thermal processing. Journal of Membrane Science, 591, 117342(2019).

    [81] H TANG, L BAI, M WANG et al. Fast synthesis of thin high silica SSZ-13 zeolite membrane using oil-bath heating. International Journal of Hydrogen Energy, 44, 23107-23119(2019).

    [82] S YANG, H KWON Y, Y KOH D et al. Highly selective SSZ-13 zeolite hollow fiber membranes by ultraviolet activation at near-ambient temperature. ChemNanoMat, 5, 61-67(2019).

    [83] K KIDA, Y MAETA, K YOGO. Pure silica CHA-type zeolite membranes for dry and humidified CO2/CH4 mixtures separation. Separation and Purification Technology, 197, 116-121(2018).

    [84] M LEE, Y JEONG, S HONG et al. High performance CO2-perm-selective SSZ-13 membranes: elucidation of the link between membrane material and module properties. Journal of Membrane Science, 611, 118390(2020).

    [85] A DJIEUGOUE M, M PRAKASH A, L KEVAN. Catalytic study of methanol-to-olefins conversion in four small-pore silicoaluminophosphate molecular sieves: influence of the structural type, nickel incorporation, nickel location, and nickel concentration. Journal of Physical Chemistry B, 104, 6452-6461(2000).

    [86] X CHEN, J GUO, Z FU et al. Characterization and catalytic behaviors of methylamine modified FAU zeolites. Journal of Porous Materials, 20, 1271-1281(2013).

    [87] , H ISHII, J HAYASHI et al. Synthesis of CHA-type titanosilicate zeolites using titanium oxide as Ti source and evaluation of their physicochemical properties. Microporous and Mesoporous Materials, 273, 243-248(2019).

    [88] S ARAKI, H ISHII, S IMASAKA et al. Synthesis and gas permeation properties of chabazite-type titanosilicate membranes synthesized using nano-sized seed crystals. Microporous and Mesoporous Materials, 292, 109798(2020).

    [89] ZUBKOV SERGEI A, KUSTOV LEONID M, KAZANSKY VADIM B et al. Investigation of hydroxyl groups in crystalline silicoaluminophosphate SAPO-34 by diffuse reflectance infrared spectroscopy. Journal of the Chemical Society, 87, 897(1991).

    [90] J HUANG, J ZOU, W S W HO. Carbon dioxide capture using a CO-selective facilitated transport membrane. Industrial & Engineering Chemistry Research, 47, 1261-1267(2008).

    [91] J ZOU, W S W HO. CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol). Journal of Membrane Science, 286, 310-321(2006).

    [92] H TEE Y, J ZOU, W S W HO. CO2-selective membranes containing dimethylglycine mobile carriers and polyethylenimine fixed carrier. Journal of the Chinese Institute of Chemical Engineers, 37, 37-47(2006).

    [93] V SINGH Z, G COWAN M, M MCDANEL W et al. Determination and optimization of factors affecting CO2/CH4 separation performance in poly(ionic liquid)-ionic liquid-zeolite mixed-matrix membranes. Journal of Membrane Science, 509, 149-155(2016).

    [94] E BARA J, E CAMPER D, L GIN D et al. Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture. Accounts of Chemical Research, 43, 152-159(2010).

    [95] B LIU, R ZHOU, N BU et al. Room-temperature ionic liquids modified zeolite SSZ-13 membranes for CO2/CH4 separation. Journal of Membrane Science, 524, 12-19(2017).

    [96] J CHEN K, G MADDEN D, T PHAM et al. Tuning pore size in square-lattice coordination networks for size-selective sieving of CO2. Angewandte Chemie International Edition, 55, 10268-10272(2016).

    [97] V SINGH Z, G COWAN M, M MCDANEL W et al. Determination and optimization of factors affecting CO2/CH4 separation performance in poly (ionic liquid)-ionic liquid-zeolite mixed-matrix membranes. Journal of Membrane Science, 509, 149-155(2016).

    [98] S IMASAKA, M ITAKURA, K YANO et al. Rapid preparation of high-silica CHA-type zeolite membranes and their separation properties. Separation and Purification Technology, 199, 298-303(2018).

    [99] H MAGHSOUDI, M SOLTANIEH. Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane. Journal of Membrane Science, 470, 159-165(2014).

    [100] L YU, A HOLMGREN, M ZHOU et al. Highly permeable CHA membranes prepared by fluoride synthesis for efficient CO2/CH4 separation. Journal of Materials Chemistry A, 6, 6847-6853(2018).

    [101] S LI, L FALCONER J, D NOBLE R. Improved SAPO-34 membranes for CO2/CH4 separations. Advanced Materials, 18, 2601-2603(2006).

    [102] H SHI. Synthesis of SAPO-34 zeolite membranes with the aid of crystal growth inhibitors for CO2-CH4 separation. New Journal of Chemistry, 38, 5276-5278(2014).

    [103] H SHI. Organic template-free synthesis of SAPO-34 molecular sieve membranes for CO2-CH4 separation. RSC Advances, 5, 38330-38333(2015).

    [104] M LI, J ZHANG, X LIU et al. Synthesis of high performance SAPO-34 zeolite membrane by a novel two-step hydrothermal synthesis+dry gel conversion method. Microporous and Mesoporous Materials, 225, 261-271(2016).

    [105] L BAI, N CHANG, M LI et al. Ultrafast synthesis of thin SAPO-34 zeolite membrane by oil-bath heating. Microporous and Mesoporous Materials, 241, 392-399(2017).

    [106] N KOSINOV, J GASCON, F KAPTEIJN et al. Recent developments in zeolite membranes for gas separation. Journal of Membrane Science, 499, 65-79(2016).

    Ziyi LI, Jiajia ZHANG, Xiaoqin ZOU, Jiayu ZUO, Jun LI, Yingshu LIU, David Youhong PUI. Synthesis and Gas Separation of Chabazite Zeolite Membranes[J]. Journal of Inorganic Materials, 2021, 36(6): 579
    Download Citation