• Journal of Inorganic Materials
  • Vol. 36, Issue 6, 579 (2021)
Ziyi LI1, Jiajia ZHANG1, Xiaoqin ZOU2, Jiayu ZUO1, Jun LI1, Yingshu LIU1、*, and David Youhong PUI3、4
Author Affiliations
  • 11. School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • 22. Institute of Chemistry, Northeast Normal University, Changchun 130024, China
  • 33. School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
  • 44. Department of Engineering, University of Minnesota, Minneapolis 55455, USA
  • show less
    DOI: 10.15541/jim20200555 Cite this Article
    Ziyi LI, Jiajia ZHANG, Xiaoqin ZOU, Jiayu ZUO, Jun LI, Yingshu LIU, David Youhong PUI. Synthesis and Gas Separation of Chabazite Zeolite Membranes[J]. Journal of Inorganic Materials, 2021, 36(6): 579 Copy Citation Text show less
    Proportions of publications and structures for primary 8-membered ring zeolite members
    1. Proportions of publications and structures for primary 8-membered ring zeolite members
    Schematic diagrams of CHA zeolite membrane preparation methods
    2. Schematic diagrams of CHA zeolite membrane preparation methods
    Summary of influences of CHA zeolite membrane synthesis conditions
    3. Summary of influences of CHA zeolite membrane synthesis conditions
    Schematic diagram of gas separation mechanisms on CHA zeolite membrane before (left) and after (right) the modulation of membrane surface chemistry[24,36,49,83,87]
    4. Schematic diagram of gas separation mechanisms on CHA zeolite membrane before (left) and after (right) the modulation of membrane surface chemistry[24,36,49,83,87]
    Separation performances of different gas mixtures on CHA zeolite membranes
    5. Separation performances of different gas mixtures on CHA zeolite membranes
    Performance of gas with different kinetic diameters on CHA zeolite membranes
    6. Performance of gas with different kinetic diameters on CHA zeolite membranes
    MethodAdvantageDisadvantageStatus of use
    In-situ synthesis① Simple production equipment② Easy to use① Low success rate② Long synthesis time③ Difficult to controlLess research, basically used for the synthesis of SAPO-34 membrane
    Secondary growth① Simple production equipment② High success rate③ Short synthesis time① Tedious stepsMore research, conducive to large-scale mass production
    Microwave heating① High success rate② Short synthesis time① Tedious steps② High equipment cost③ High energy consumptionNew method, still in basic research stage
    Table 1. Comparison of CHA zeolite membrane synthesis methods
    Influencing factorsSSZ-13SAPO-34
    Seed conditionsSupportα-Al2O3, mulliteα-Al2O3
    Seed crystalBall milled nano seedsFlake nano seeds
    Seeding methodDip coatingWipe, electrophoretic deposition
    Hydrothermal synthesis conditionsFormula (structure directing agent, Si/Al, water content, cationic species)Non-pure silica: 1SiO2 : (5-100)Al2O3 : (0.1-0.2)NaOH : (0-0.06)KOH(Oriented growth regulation) : (0.05-0.6)TMAdaOH : (0-0.05)TEAOH : (40-120)H2OPure silica : 1SiO2 : (0.5-1.4)TMAdaOH : (0.5-1.4)HF : (3-6)H2O1Al2O3 : (1-2)P2O5 : (0.3-0.6)SiO2 : (1-4)TEAOH : (0-1.6)DPA : (55-400)H2O
    Temperature160-170 ℃180-230 ℃
    Time24-72 h6-30 h
    Calcination conditionsConventional calcination400-550 ℃ (6-12 h), temperature rise and fall rate (0.2-1) ℃/min400-480 ℃ (4-10 h), temperature rise and fall rate (0.5- 2) ℃/min
    Rapid heat treatment700-1000 ℃ (0.5-2 min)+conventional calcination700 ℃ (1-5 min)+ conventional calcination
    Table 2. Summary table of preferred conditions for secondary synthesis of SSZ-13 membrane and SAPO-34 membrane
    Serial numberRef.Thickness/μmTemperature/℃Pressure/MPaGas separation, X/YX permeance/ (×10-8, mol·m-2·s-1·Pa-1)Separation selectivity, X/Y
    1Kalipcilar[7]10-4025-H2/n-C4H10148.7
    2Zheng[27]10300.2C2H4/C2H60.2911
    3Feng[72]4.3200.138Kr/Xe1235
    4Yang[82]3.722-H2/C3H88.4810
    Table 3. Separation performances of H2, hydrocarbon and noble gases on CHA zeolite membranes
    Serial numberRef.Thickness/μmTemperature/℃Pressure/MPaGas separation, X/YX permeance/(×10-7, mol·m-2·s-1·Pa-1)Separation selectivity, X/Y
    1Kosinov[14]4-6200.6CO2/CH42.542
    200.6CO2/N22.512
    2Wu[21]6-8200.27CO2/CH42.1178
    200.27N2/CH40.189
    3Song[29]6250.2CO2/CH45.656.5
    250.2N2/CH40.8910
    4Li[31]2250.2CO2/CH41.16213
    250.2N2/CH41.0713
    5Yu[57]1.5-240.9CO2/CH47976
    6Karakiliç[64]2-4220.2CO2/CH42.6176
    7Qiu[66]0.44200.14CO2/CH448153
    8Kida[71]-400.1CO2/CH41754
    400.1H2/CH41134
    9Tang[81]10200.2CO2/CH49.3208
    10Kida[83]5250.1CO2/CH440130
    11Imasaka[98]3400.3CO2/CH415115
    12Maghsoudi[99]20300.1CO2/CH40.3421.6
    13Yu[100]1.330.9CO2/CH48447
    14Li[5]5800.14CO2/CH42.0270
    15Li[19]-240.138CO2/CH41.667
    16Carreon[23]-220.138CO2/CH43.8170
    17Venna[36]-220.138CO2/CH45.0245
    220.138CO2/N22.139
    18Huang[40]2220.074N2/CH44.9311.3
    19Chen[41]2-3250.1CO2/CH41.18160
    20Chang[43]--4CO2/CH46.188
    21Liu[48]3300.1CO2/CH41295
    22Rehman[53]-800.4CO2/CH447.365
    23Liu[55]7-15250.1CO2/N218.529.8
    24Li[74]4-6227CO2/CH40.4100
    25Zhang[78]-204.6CO2/CH48.255
    26Noble[101]-220.14CO2/CH41.2170
    27Shi[102]2-4220.14CO2/CH423.2186
    28Shi[103]4-5220.14CO2/CH416.8256
    29Li[104]3-4CO2/CH413.262
    30Bai[105]0.8-0.2CO2/CH425.370
    Table 4. Separation performances of CO2/CH4, CO2/N2, N2/CH4, H2/CH4 on CHA zeolite membranes
    Ziyi LI, Jiajia ZHANG, Xiaoqin ZOU, Jiayu ZUO, Jun LI, Yingshu LIU, David Youhong PUI. Synthesis and Gas Separation of Chabazite Zeolite Membranes[J]. Journal of Inorganic Materials, 2021, 36(6): 579
    Download Citation