• Photonics Research
  • Vol. 9, Issue 5, 893 (2021)
Renduo Qi1, Qiancheng Xu1, Ning Wu1, Kaiyu Cui1、2、3, Wei Zhang1、2、3、*, and Yidong Huang1、2、3
Author Affiliations
  • 1Beijing National Research Center for Information Science and Technology (BNRist), Beijing Innovation Center for Future Chips, Electronic Engineering Department, Tsinghua University, Beijing 100084, China
  • 2Frontier Science Center for Quantum Information, Beijing 100084, China
  • 3Beijing Academy of Quantum Information Sciences, Beijing 100193, China
  • show less
    DOI: 10.1364/PRJ.417933 Cite this Article Set citation alerts
    Renduo Qi, Qiancheng Xu, Ning Wu, Kaiyu Cui, Wei Zhang, Yidong Huang. Nonsuspended optomechanical crystal cavities using As2S3 chalcogenide glass[J]. Photonics Research, 2021, 9(5): 893 Copy Citation Text show less
    References

    [1] A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, O. Painter. A high-resolution microchip optomechanical accelerometer. Nat. Photonics, 6, 768-772(2012).

    [2] E. Gavartin, P. Verlot, T. J. Kippenberg. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotechnol., 7, 509-514(2012).

    [3] Y. Chen, W. S. Fegadolli, W. M. Jones, A. Scherer, M. Li. Ultrasensitive gas-phase chemical sensing based on functionalized photonic crystal nanobeam cavities. ACS Nano, 8, 522-527(2014).

    [4] Y. C. Liu, Y. F. Xiao, X. Luan, C. W. Wong. Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics. Phys. Rev. Lett., 110, 153606(2013).

    [5] S. Manipatruni, J. T. Robinson, M. Lipson. Optical nonreciprocity in optomechanical structures. Phys. Rev. Lett., 102, 213903(2009).

    [6] F. Ruesink, M. A. Miri, A. Alù, E. Verhagen. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun., 7, 13662(2016).

    [7] M. Hossein-Zadeh, K. J. Vahala. Observation of optical spring effect in a microtoroidal optomechanical resonator. Opt. Lett., 32, 1611-1613(2007).

    [8] X. Sun, X. Zhang, H. X. Tang. High-Q silicon optomechanical microdisk resonators at gigahertz frequencies. Appl. Phys. Lett., 100, 173116(2012).

    [9] M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, O. Painter. Optomechanical crystals. Nature, 462, 78-82(2009).

    [10] J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, C. M. S. Torres. A one-dimensional optomechanical crystal with a complete phononic band gap. Nat. Commun., 5, 4452(2014).

    [11] X. Zhang, G. Zhou, P. Shi, H. Du, T. Lin, J. Teng, F. S. Chau. On-chip integrated optofluidic complex refractive index sensing using silicon photonic crystal nanobeam cavities. Opt. Lett., 41, 1197-1200(2016).

    [12] S. C. Wu, L. G. Qin, J. Jing, T. M. Yan, J. Lu, Z. Y. Wang. Microwave-controlled optical double optomechanically induced transparency in a hybrid piezo-optomechanical cavity system. Phys. Rev. A, 98, 013807(2018).

    [13] W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. V. A. N. Laer, A. H. Safavi-Naeini. Lithium niobate piezo-optomechanical crystals. Optica, 6, 845-853(2019).

    [14] J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, O. Painter. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett., 101, 081115(2012).

    [15] Y. Li, K. Cui, X. Feng, Y. Huang, Z. Huang, F. Liu, W. Zhang. Optomechanical crystal nanobeam cavity with high optomechanical coupling rate. J. Opt., 17, 045001(2015).

    [16] C. J. Sarabalis, J. T. Hill, A. H. Safavi-Naeini. Guided acoustic and optical waves in silicon-on-insulator for Brillouin scattering and optomechanics. APL Photon., 1, 071301(2016).

    [17] Z. Feng, J. Ma, X. Sun. Parity–time-symmetric mechanical systems by the cavity optomechanical effect. Opt. Lett., 43, 4088-4091(2018).

    [18] K. Fang, M. H. Matheny, X. Luan, O. Painter. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat. Photonics, 10, 489-496(2016).

    [19] B. J. Eggleton, B. Luther-Davies, K. Richardson. Chalcogenide photonics. Nat. Photonics, 5, 141-148(2011).

    [20] T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, B. Luther-Davies. Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses. Opt. Mater. Express, 4, 1011-1022(2014).

    [21] C. G. Poulton, R. Pant, B. J. Eggleton. Acoustic confinement and stimulated Brillouin scattering in integrated optical waveguides. J. Opt. Soc. Am. B, 30, 2657-2664(2013).

    [22] R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, B. J. Eggleton. On-chip stimulated Brillouin scattering. Opt. Express, 19, 8285-8290(2011).

    [23] M. Merklein, I. V. Kabakova, T. F. S. Büttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, B. J. Eggleton. Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits. Nat. Commun., 6, 6396(2015).

    [24] B. J. Eggleton, C. G. Poulton, R. Pant. Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits. Adv. Opt. Photon., 5, 536-587(2013).

    [25] C. Li, P. Guo, W. Huang, W. Zhang, P. Xu, P. Zhang. Reverse-strip-structure Ge28Sb12Se60 chalcogenide glass waveguides prepared by micro-trench filling and lift-off. J. Opt. Soc. Am. B, 37, 82-87(2020).

    [26] J. S. Sanghera, L. B. Shaw, I. D. Aggarwal. Applications of chalcogenide glass optical fibers. C. R. Chim., 5, 873-883(2002).

    [27] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [28] S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, Y. Fink. Perturbation theory for Maxwell’s equations with shifting material boundaries. Phys. Rev. E, 65, 066611(2002).

    [29] D. K. Biegelsen. Photoelastic tensor of silicon and the volume dependence of the average gap. Phys. Rev. Lett., 32, 1196-1199(1974).

    [30] A. H. Safavi-Naeini, O. Painter. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab. Opt. Express, 18, 14926-14943(2010).

    [31] R. W. Dixon. Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners. J. Appl. Phys., 38, 5149-5153(1967).

    [32] Y. Akahane, T. Asano, B. S. Song, S. Noda. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature, 425, 944-947(2003).

    [33] T. Xu, M. S. Wheeler, S. V. Nair, H. E. Ruda, M. Mojahedi, J. S. Aitchison. Highly confined mode above the light line in a two-dimensional photonic crystal slab. Appl. Phys. Lett., 93, 241105(2008).

    [34] T. Huan, R. Zhou, H. Ian. Dynamic entanglement transfer in a double-cavity optomechanical system. Phys. Rev. A, 92, 022301(2015).

    [35] U. S. Sainadh, A. Narayanan. Mechanical switch for state transfer in dual-cavity optomechanical systems. Phys. Rev. A, 88, 033802(2013).

    Renduo Qi, Qiancheng Xu, Ning Wu, Kaiyu Cui, Wei Zhang, Yidong Huang. Nonsuspended optomechanical crystal cavities using As2S3 chalcogenide glass[J]. Photonics Research, 2021, 9(5): 893
    Download Citation