• Journal of Semiconductors
  • Vol. 43, Issue 6, 063101 (2022)
Ye Yuan1, Shengqiang Zhou2, and Xinqiang Wang1、3
Author Affiliations
  • 1Songshan Lake Materials Laboratory, Dongguan 523808, China
  • 2Institute of Ion Beam Physics and Material Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
  • 3Dongguan Institute of Optoelectronics, Peking University, Dongguan 523808, China
  • show less
    DOI: 10.1088/1674-4926/43/6/063101 Cite this Article
    Ye Yuan, Shengqiang Zhou, Xinqiang Wang. Modulating properties by light ion irradiation: From novel functional materials to semiconductor power devices[J]. Journal of Semiconductors, 2022, 43(6): 063101 Copy Citation Text show less
    References

    [1] J Mayer, O Marsh. Ion implantation in semiconductors. Appl Solid State Sci, 1, 239(1969).

    [2]

    [3] Y Yuan, C Xu, R Hübner et al. Interplay between localization and magnetism in (Ga, Mn)As and (In, Mn)As. Phys Rev Mater, 1, 054401(2017).

    [4] Y Yuan, Y Wang, M Khalid et al. Ferromagnetic GaMnP prepared by ion implantation and pulsed laser annealing. IEEE Trans Mag, 50, 2401304(2014).

    [5] Y Yuan, M Wang, C Xu et al. Electronic phase separation in insulating (Ga, Mn)As with low compensation: Super-paramagnetism and hopping conduction. J Phys Condens Matter, 30, 095801(2018).

    [6] Y Yuan, R Hübner, F Liu et al. Ferromagnetic Mn-implanted GaP: Microstructures vs magnetic properties. ACS Appl Mater & Interfaces, 8, 3912(2016).

    [7] Y Yuan, g Y Wang, o K Gao et al. High Curie temperature and perpendicular magnetic anisotropy in homoepitaxial InMnAs films. J Phys D, 48, 235002(2015).

    [8] S Prucnal, V Heera, R Hübner et al. Superconductivity in single-crystalline aluminum- and gallium-hyperdoped germanium. Phys Rev Mater, 3, 054802(2019).

    [9] M Wang, Y Berencén, E García-Hemme et al. Extended infrared photoresponse in Te-hyperdoped Si at room temperature. Phys Rev Appl, 10, 024054(2018).

    [10] F Liu, S Prucnal, Y Berencén et al. Realizing the insulator-to-metal transition in Se-hyperdoped Si via non-equilibrium material processing. J Phys D, 50, 415102(2017).

    [11] J F Ziegler, r M D Ziegler, k J B Biersack. SRIM-The stopping and range of ions in matter (2010). Nucl Instrum Methods Phys Res Sect B, 268, 1818(2010).

    [12] S Zhou, X L Chen. Defect-induced magnetism in SiC. J Phys D, 52, 393001(2019).

    [13] P A Lee, T V Ramakrishnan. Disordered electronic systems. Rev Mod Phys, 57, 287(1985).

    [14] S T Pantelides. The electronic structure of impurities and other point defects in semiconductors. Rev Mod Phys, 50, 797(1978).

    [15] J Park, J H Choi, K Kong et al. Electrically driven mid-submicrometre pixelation of InGaN micro-light-emitting diode displays for augmented-reality glasses. Nat Photonics, 15, 449(2021).

    [16] S Zhou, L Li, Y Yuan et al. Precise tuning of the Curie temperature of (Ga, Mn)As-based magnetic semiconductors by hole compensation: Support for valence-band ferromagnetism. Phy Rev B, 94, 075205(2016).

    [17] C Xu, M Wang, Y Yuan et al. Hole compensation effect in III-Mn-V dilute ferromagnetic semiconductors. J Phys D, 52, 355301(2019).

    [18] C W Rischau, B Leridon, B Fauqué et al. Doping of Bi2Te3 using electron irradiation. Phys Rev B, 88, 205207(2013).

    [19] Y Liu, Z Li, L Guo et al. Towards diluted magnetism in TaAs. Phys Rev Mater, 1, 044203(2017).

    [20] P Hazdra, S Popelka, A Schöner. Optimization of SiC power p-i-n diode parameters by proton irradiation. IEEE Trans Electron Devices, 65, 4483(2018).

    [21] R K Sharma, P Hazdra, S Popelka. The effect of light ion irradiation on 4H-SiC MPS power diode characteristics: Experiment and simulation. IEEE Trans Nucl Sci, 62, 534(2015).

    [22] B Aspar, M Bruel, H Moriceau et al. Basic mechanisms involved in the Smart-Cut® process. Microelectron J, 36, 233(1997).

    [23] M Bruel, B Aspar, A J Auberton-Hervé. Smart-Cut: A new silicon on insulator material technology based on hydrogen implantation and wafer bonding. J Jpn Appl Phys, 36, 1636(1997).

    [24] T Dietl, H Ohno, F Matsukura et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 287, 1019(2000).

    [25] Yuan Y, Amarouche T, Xu C et al. Switching the uniaxial magnetic anisotropy by ion irradiation induced compensation. J Phys D, 51, 145001(2018).

    [26] M Dobrowolska, K Tivakornsasithorn, X Liu et al. Controlling the Curie temperature in (Ga, Mn)As through location of the Fermi level within the impurity band. Nat Mater, 11, 444(2012).

    [27] S T B Goennenwein, T A Wassner, H Huebl et al. Hydrogen control of ferromagnetism in a dilute magnetic semiconductor. Phys Rev Lett, 92, 227202(2004).

    [28] E H C P Sinnecker, G M Penello, T G Rappoport et al. Ion-beam modification of the magnetic properties of Ga1−xMnxAs epilayers. Phys Rev B, 81, 245203(2010).

    [29] R Kudrawiec. Conduction and valence band positions versus the Fermi-level stabilization energy in quaternary dilute nitrides. Phys Status Solidi C, 8, 1650(2011).

    [30] C Wang, C H Chang, A Huang et al. Tunable disorder and localization in the rare-earth nickelates. Phys Rev Mater, 3, 053801(2019).

    [31] F Evers, A D Mirlin. Anderson transitions. Rev Mod Phys, 80, 1355(2008).

    [32] M P Smylie, H Claus, W K Kwok et al. Superconductivity, pairing symmetry, and disorder in the doped topological insulator Sn1−xInxTe for x > 0.10. Phys Rev B, 97, 024511(2018).

    [33] V Harimohan, A Bharathi, R Rajaraman et al. Magneto-resistance in pristine and irradiated TaAs2. AIP Adv, 9, 045020(2019).

    [34]

    [35] A Hashibon, C Elsässer. First-principles density functional theory study of native point defects in Bi2Te3. Phys Rev B, 84, 144117(2011).

    [36] P Pecheur, G Toussaint. Tight-binding studies of crystal stability and defects in Bi2Te3. J Phys Chem Solids, 55, 327(1994).

    [37] P Chaudhari, M B Bever. Effects of irradiation with protons on the electrical properties of Bi2Te3. J Appl Phys, 37, 4181(1966).

    [38] P Chaudhari, M B Bever. Defects in the compound Bi2Te3 caused by irradiation with protons. J Appl Phys, 38, 2417(1967).

    [39] M P Smylie, K Willa, H Claus et al. Robust odd-parity superconductivity in the doped topological insulator NbxBi2Se3. Phys Rev B, 96, 115145(2017).

    [40]

    [41] J Vobecký, P Hazdra, V Záhlava et al. ON-state characteristics of proton irradiated 4H–SiC Schottky diode: The calibration of model parameters for device simulation. Solid-State Electron, 94, 32(2014).

    [42] J Vobecký, P Hazdra, S Sharma et al. Impact of electron irradiation on the On-state characteristics of a 4H-SiC JBS diode. IEEE Trans Electron Devices, 62, 1964(2015).

    [43] T Hiyoshi, T Kimoto. Reduction of deep levels and improvement of carrier lifetime in n-type 4H-SiC by thermal oxidation. Appl Phys Express, 2, 041101(2009).

    [44] P Hazdra, S Popelka, V Záhlava et al. Radiation damage in 4H-SiC and its effect on power device characteristics. Solid State Phenomena, 242, 421(2015).

    [45] J S Williams. Ion implantation of semiconductors. Mater Sci Eng A, 253, 8(1998).

    [46] A Hallén, S Janson M, A YuKuznetsov et al. Ion implantation of silicon carbide. Nucl Instrum Methods Phys Res Sect B, 186, 186(2002).

    [47] J C Zolper. Ion implantation in group III-nitride semiconductors: a tool for doping and defect studies. J Crys Growth, 178, 157(1997).

    [48] S J Pearton. Ion implantation in III–V semiconductor technology. Int J Mod Phys B, 7, 4687(1993).

    [49] G Alfieri, E V Monakhov, B G Svensson et al. Annealing behavior between room temperature and 2000 °C of deep level defects in electron-irradiated n-type 4H silicon carbide. J Appl Phys, 98, 043518(2005).

    [50] B Zippelius, J Suda, T Kimoto. High temperature annealing of n-type 4H-SiC: Impact on intrinsic defects and carrier lifetime. J Appl Phys, 111, 033515(2012).

    [51] T Dalibor, G Pensl, H Matsunami et al. Deep defect centers in silicon carbide monitored with deep level transient spectroscopy. Phys Status Solidi A, 162, 199(1997).

    [52] P B Klein, B V Shanabrook, S W Huh et al. Lifetime-limiting defects in n- 4H-SiC epilayers. Appl Phys Lett, 88, 052110(2006).

    [53] I Pintilie, L Pintilie, K Irmscher et al. Formation of the Z1,2 deep-level defects in 4H-SiC epitaxial layers: Evidence for nitrogen participation. Appl Phys Lett, 81, 4841(2002).

    [54] T A G Eberlein, R Jones, P R Briddon. Z1/Z2 defects in 4H-SiC. Phys Rev Lett, 90, 225502(2003).

    [55] L Storasta, A Henry, J P Bergman et al. Investigations of possible nitrogen participation in the Z1/Z2 defect in 4H-SiC. Mater Sci Forum, 457–460, 469(2004).

    [56] L Storasta, H Tsuchida. Reduction of traps and improvement of carrier lifetime in epilayers by ion implantation. Appl Phys Lett, 90, 062116(2007).

    [57] L Storasta, H Tsuchida, T Miyazawa. Enhanced annealing of the Z1/2 defect in 4H–SiC epilayers. J Appl Phys, 103, 013705(2008).

    [58] S Ichikawa, K Kawahara, J Suda et al. Carrier recombination in n-type 4H-SiC epilayers with long carrier lifetimes. Appl Phys Express, 5, 101301(2012).

    [59] P Hazdra, S Popelka, A Schöner. Local lifetime control in 4H-SiC by proton irradiation. Mater Sci Forum, 924, 436(2018).

    [60] N Achtziger, G Pasold, R Sielemann et al. Tungsten in silicon carbide: Band-gap states and their polytype dependence. Phys Rev B, 62, 12888(2000).

    [61] C Hemmingsson, N T Son, O Kordina et al. Deep level defects in electron-irradiated 4H SiC epitaxial layers. J Appl Phys, 81, 6155(1997).

    [62] L Storasta, J P Bergman, E Janzén et al. Deep levels created by low energy electron irradiation in 4H-SiC. J Appl Phys, 96, 4909(2004).

    [63] P Hazdra, S Popelka. Lifetime control in SiC PiN diodes using radiation defects. Mater Sci Forum, 897, 463(2017).

    [64] N T Son, X T Trinh, L S Løvlie et al. Negative-U system of carbon vacancy in 4H-SiC. Phys Rev Lett, 109, 187603(2012).

    [65] J Vobecký, P Hazdra, V Záhlava. Open circuit voltage decay lifetime of ion irradiated devices. Microelectron J, 30, 513(1999).

    [66] P Guerriero, A Sanseverino, S Daliento. Lifetime profile reconstruction in helium implanted silicon for planar IGBTs. 29th International Conference on Microelectronics Proceedings - MIEL 2014, Belgrade, 325(2014).

    [67] P Hazdra, K Brand, J Rubeš et al. Local lifetime control by light ion irradiation: impact on blocking capability of power P–i–N diode. Microelectron J, 32, 449(2001).

    [68] E Napoli, A G M Strollo, P Spirito. Numerical analysis of local lifetime control for high-speed low-loss P-i-N diode design. IEEE Trans Power Electron, 14, 615(1999).

    [69] P Hazdra, V Komarnitskyy. Lifetime control in silicon power P-i-N diode by ion irradiation: Suppression of undesired leakage. Microelectron J, 37, 197(2006).

    [70] I Kohno. Production of fast-switching power thyristors by proton irradiation. Nucl Instrum Methods Phys Res Sect B, 37/38, 739(1989).

    [71] D C Sawko, J Bartko. Production of fast switching power thyristors by proton irradiation. IEEE Trans Nucl Sci, 30, 1756(1983).

    [72] P Hazdra, K Brand, J Vobecky. Effect of defects produced by MeV H and He ion implantation on characteristic of power silicon P-i-N diodes. 2000 International Conference on Ion Implantation Technology, 135(2000).

    [73] P Hazdra, J Vobecky, H Dorschner et al. Axial lifetime control in silicon power diodes by irradiation with protons, alphas, low- and high-energy electrons. Microelectron J, 35, 249(2004).

    [74] P Hazdra, J Rubeš, J Vobecký. Divacancy profiles in MeV helium irradiated silicon from reverse I–V measurement. Nucl Instrum Methods Phys Res Sect B, 159, 207(1999).

    [75] J Vobecky, P Hazdra, V Zahlava. Helium irradiated high-power P-i-N diode with low On-state voltage drop. Solid-State Electron, 47, 45(2003).

    [76] J Vobecky, P Hazdra. The application of platinum-silicide anode layer to decrease the static and turn-off losses in high-power P-i-N diode. Thin Solid Films, 433, 305(2003).

    [77] J Vobecky, P Hazdra. Advanced local lifetime control for higher reliability of power devices. Microelectron Reliab, 42, 1883(2003).

    [78] A Prabhakar, T C McGill, M A Nicolet. Platinum diffusion into silicon from PtSi. Appl Phys Lett, 43, 1118(1983).

    [79] D C Schmidt, G Svensson, S Godey et al. The influence of diffusion temperature and ion dose on proximity gettering of platinum in silicon implanted with alpha particles at low doses. Appl Phys Lett, 74, 3329(1999).

    [80] D Seol, S Kim, W S Jang et al. Selective patterning of out-of-plane piezoelectricity in MoTe2 via focused ion beam. Nano Energy, 79, 105451(2021).

    [81] E Mitterreiter, B Schuler, K A Cochrane et al. Atomistic positioning of defects in helium ion treated single-layer MoS2. Nano Lett, 20, 4437(2020).

    [82] C Babin, R Stöhr, N Morioka et al. Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence. Nat Mater, 21, 67(2022).

    [83] C Kasper, D Klenkert, Z Shang et al. Influence of irradiation on defect spin coherence in silicon carbide. Phys Rev Appl, 13, 044054(2020).

    [84] M E Bathen, L Vines. Manipulating single-photon emission from point defects in diamond and silicon carbide. Adv Quantum Technol, 4, 2100003(2021).

    [85] W Xiong, X Zhou, G Xu et al. Double-barrier-Ga2O3 Schottky barrier diode with low turn-on voltage and leakage current. IEEE Electron Device Lett, 42, 430(2021).

    [86] Q He, W Hao, X Zhou et al. Over 1 GW/cm2 vertical Ga2O3 Schottky barrier diodes without edge termination. IEEE Electron Device Lett, 43, 264(2022).

    [87] W Hao, Q He, K Zhou et al. Low defect density and small curve hysteresis in NiO/β-Ga2O3 pn diode with a high PFOM of 0.65 GW/cm2. Appl Phys Lett, 118, 043501(2021).

    [88] X Hou, X Zhao, Y Zhang et al. High-performance harsh-environment-resistant GaOx solar-blind photodetectors via defect and doping engineering. Adv Mater, 34, 2106923(2022).

    Ye Yuan, Shengqiang Zhou, Xinqiang Wang. Modulating properties by light ion irradiation: From novel functional materials to semiconductor power devices[J]. Journal of Semiconductors, 2022, 43(6): 063101
    Download Citation