• Laser & Optoelectronics Progress
  • Vol. 56, Issue 17, 170613 (2019)
Teng Tan1、**, Zhongye Yuan1, Yuanfu Chen2, and Baicheng Yao1、*
Author Affiliations
  • 1 Key Laboratory of Optical Fiber Sensing and Communications, Ministry of Education, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
  • 2 State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
  • show less
    DOI: 10.3788/LOP56.170613 Cite this Article Set citation alerts
    Teng Tan, Zhongye Yuan, Yuanfu Chen, Baicheng Yao. Graphene-Based Fiber Functional Sensors and Laser Devices[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170613 Copy Citation Text show less
    References

    [1] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [2] Geim A K, Novoselov K S. The rise of graphene[M]. ∥Rodgers P. Nanoscience and Technology: A Collection of Reviews from Nature Journals. Singapore: World Scientific, 11-19(2010).

    [3] Novoselov K S, Geim A K, Morozov S V et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 438, 197-200(2005).

    [4] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 6, 183(2007).

    [5] Geim A K. Graphene: status and prospects[J]. Science, 324, 1530-1534(2009).

    [6] Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of graphene[J]. Chemical Reviews, 110, 132-145(2010).

    [7] Bonaccorso F, Sun Z, Hasan T et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 4, 611-622(2010).

    [8] Young R J, Kinloch I A, Gong L et al. The mechanics of graphene nanocomposites: a review[J]. Composites Science and Technology, 72, 1459-1476(2012).

    [9] Balandin A A, Ghosh S, Bao W Z et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 8, 902-907(2008).

    [11] Zhang Y B, Tan Y W, Stormer H L et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 438, 201-204(2005).

    [12] Katsnelson M I, Novoselov K S, Geim A K. Chiral tunnelling and the Klein paradox in graphene[J]. Nature Physics, 2, 620-625(2006).

    [13] Nair R R, Blake P, Grigorenko A N et al. Fine structure constant defines visual transparency of graphene[J]. Science, 320, 1308(2008).

    [14] Das A, Pisana S, Chakraborty B et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor[J]. Nature Nanotechnology, 3, 210-215(2008).

    [15] Schwierz F. Graphene transistors[J]. Nature Nanotechnology, 5, 487-496(2010).

    [16] Rodrigo D, Limaj O, Janner D et al. Mid-infrared plasmonic biosensing with graphene[J]. Science, 349, 165-168(2015).

    [17] Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics[J]. Nature Photonics, 6, 749-758(2012).

    [18] Liu M, Yin X B, Ulin-Avila E et al. A graphene-based broadband optical modulator[J]. Nature, 474, 64-67(2011).

    [19] Phare C T. Daniel Lee Y H, Cardenas J, et al. Graphene electro-optic modulator with 30 GHz bandwidth[J]. Nature Photonics, 9, 511-514(2015).

    [20] Mo J, Feng G Y, Yang M C et al. Graphene-based broadband all-optical spatial modulator[J]. Acta Physica Sinica, 67, 214201(2018).

    [21] Koppens F H L, Mueller T, Avouris P et al. . Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 9, 780-793(2014).

    [22] Chakraborty S, Marshall O P, Folland T G et al. Gain modulation by graphene plasmons in aperiodic lattice lasers[J]. Science, 351, 246-248(2016).

    [23] Zhao J, Wang J X, Qiu W B et al. Surface plasmonic polariton band-stop filters based on graphene[J]. Laser & Optoelectronics Progress, 55, 012401(2018).

    [24] Novoselov K S, Fal’ko V I, Colombo L et al. A roadmap for graphene[J]. Nature, 490, 192-200(2012).

    [25] Sun Z P, Martinez A, Wang F. Optical modulators with 2D layered materials[J]. Nature Photonics, 10, 227-238(2016).

    [26] Martinez A, Sun Z P. Nanotube and graphene saturable absorbers for fibre lasers[J]. Nature Photonics, 7, 842-845(2013).

    [27] Mueller T, Xia F N, Avouris P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 4, 297-301(2010).

    [28] Hill E W, Vijayaragahvan A, Novoselov K. Graphene sensors[J]. IEEE Sensors Journal, 11, 3161-3170(2011).

    [29] Liu Y X, Dong X C, Chen P. Biological and chemical sensors based on graphene materials[J]. Chemical Society Reviews, 41, 2283-2307(2012).

    [30] Yavari F, Koratkar N. Graphene-based chemical sensors[J]. The Journal of Physical Chemistry Letters, 3, 1746-1753(2012).

    [31] Loh K P, Bao Q L, Eda G et al. Graphene oxide as a chemically tunable platform for optical applications[J]. Nature Chemistry, 2, 1015-1024(2010).

    [32] Li W, Chen B G, Meng C et al. Ultrafast all-optical graphene modulator[J]. Nano Letters, 14, 955-959(2014).

    [33] Tong L M, Gattass R R, Ashcom J B et al. Subwavelength-diameter silica wires for low-loss optical wave guiding[J]. Nature, 426, 816-819(2003).

    [34] Hoffmann P, Dutoit B, Salathé R P. Comparison of mechanically drawn and protection layer chemically etched optical fiber tips[J]. Ultramicroscopy, 61, 165-170(1995).

    [35] Kou J L, Ding M, Feng J et al. Microfiber-based Bragg gratings for sensing applications: a review[J]. Sensors, 12, 8861-8876(2012).

    [36] Lou J Y, Wang Y P, Tong L M. Microfiber optical sensors: a review[J]. Sensors, 14, 5823-5844(2014).

    [37] Xu Y X, Fang W, Tong L M. Real-time control of micro/nanofiber waist diameter with ultrahigh accuracy and precision[J]. Optics Express, 25, 10434-10440(2017).

    [38] Chen X F, Zhou K M, Zhang L et al. Simultaneous measurement of temperature and external refractive index by use of a hybrid grating in D fiber with enhanced sensitivity by HF etching[J]. Applied Optics, 44, 178-182(2005).

    [39] Mayorov A S, Gorbachev R V, Morozov S V et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature[J]. Nano Letters, 11, 2396-2399(2011).

    [40] Zhao S, Xie S C, Zhao Z et al. Green and high-efficiency production of graphene by tannic acid-assisted exfoliation of graphite in water[J]. ACS Sustainable Chemistry & Engineering, 6, 7652-7661(2018).

    [41] Ping Y J, Gong Y N, Pan C X. Research progress in preparation of graphene from electrochemical exfoliation and its optoelectronic characteristics[J]. Chinese Journal of Lasers, 44, 0703007(2017).

    [42] Moon J S, Curtis D, Hu M et al. Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates[J]. IEEE Electron Device Letters, 30, 650-652(2009).

    [43] Compton O C, Nguyen S T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials[J]. Small, 6, 711-723(2010).

    [44] Guo S J, Dong S J. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications[J]. Chemical Society Reviews, 40, 2644-2672(2011).

    [45] de Heer W A, Berger C, Wu X S et al. . Epitaxial graphene electronic structure and transport[J]. Journal of Physics D: Applied Physics, 43, 374007(2010).

    [46] Zhou H L, Yu W J, Liu L X et al. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene[J]. Nature Communications, 4, 2096(2013).

    [47] Yang Y C, Wu B, Liu Y Q. Synthesis of bilayer graphene via chemical vapor deposition and its optoelectronic devices[J]. Acta Physica Sinica, 66, 218101(2017).

    [48] Wang W R, Zhou Y X, Li T et al. Research on synthesis of high-quality and large-scale graphene films by chemical vapor deposition[J]. Acta Physica Sinica, 61, 038702(2012).

    [49] Cai J M, Ruffieux P, Jaafar R et al. Atomically precise bottom-up fabrication of graphene nanoribbons[J]. Nature, 466, 470-473(2010).

    [50] Yan X, Cui X, Li B S et al. Large, solution-processable graphene quantum dots as light absorbers for photovoltaics[J]. Nano Letters, 10, 1869-1873(2010).

    [53] Hummers W S. Jr, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 80, 1339(1958). http://pubs.acs.org/doi/pdf/10.1021/ja01539a017

    [54] Chen J, Yao B W, Li C et al. An improved Hummers method for eco-friendly synthesis of graphene oxide[J]. Carbon, 64, 225-229(2013).

    [55] Huang L X, Chen Y F, Li P J et al. Effects of preparation temperature of graphite oxide on the structure of graphite and electrochemical properties of graphene-based lithium-ion batteries[J]. Acta Physica Sinica, 61, 156103(2012).

    [56] Alam S N, Sharma N, Kumar L. Synthesis of graphene oxide (GO) by modified Hummers method and its thermal reduction to obtain reduced graphene oxide (rGO)[J]. Graphene, 6, 1-18(2017).

    [57] Wang H B, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications[J]. ACS Catalysis, 2, 781-794(2012).

    [58] Kong X K, Chen C L, Chen Q W. Doped graphene for metal-free catalysis[J]. Chemical Society Reviews, 43, 2841-2857(2014).

    [59] Yao B C, Wu Y, Cheng Y et al. All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide[J]. Sensors and Actuators B: Chemical, 194, 142-148(2014).

    [60] Yao B C, Wu Y, Chen Yet al. Graphene-based microfiber gas sensor[J]. 8421: 8421CD(2012).

    [61] Yao B C, Wu Y, Gong Y et al. A highly sensitive and fast response molecular sensor based on graphene coated microfiber[J]. Proceedings of SPIE, 8421, 842186(2012).

    [62] Wu Y, Yao B C, Cheng Y et al. Hybrid graphene-microfiber waveguide for chemical gas sensing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 49-54(2014).

    [63] Bao Q L, Zhang H, Wang Y et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 19, 3077-3083(2009).

    [64] Sun Z P, Hasan T, Torrisi F et al. Graphene mode-locked ultrafast laser[J]. ACS Nano, 4, 803-810(2010).

    [65] Bogusławski J, Wang Y D, Xue H et al. Graphene actively mode-locked lasers[J]. Advanced Functional Materials, 28, 1801539(2018).

    [66] Li C, Chen J H, Wang W S et al. Graphene fibers: manipulation of nonlinear optical properties of graphene bonded fiber devices by thermally engineering Fermi-Dirac distribution[J]. Advanced Optical Materials, 5, 1700630(2017).

    [67] Yao B C, Liu Y, Huang S W et al. Broadband gate-tunable terahertz plasmons in graphene heterostructures[J]. Nature Photonics, 12, 22-28(2018).

    [68] Yao B C, Huang S W, Liu Y et al. Gate-tunable frequency combs in graphene-nitride microresonators[J]. Nature, 558, 410-414(2018).

    [69] Fu H W, Jiang Y H, Ding J J et al. Zinc oxide nanoparticle incorporated graphene oxide as sensing coating for interferometric optical microfiber for ammonia gas detection[J]. Sensors and Actuators B: Chemical, 254, 239-247(2018).

    [70] Wu Y, Yao B C, Cheng Y et al. Highly sensitive gas sensor based on graphene/microfiber hybrid waveguide with Mach-Zehnder interferometer[J]. Proceedings of SPIE, 9157, 915747(2014).

    [71] Yao B C, Wu Y, Zhang A Q et al. Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing[J]. Optics Express, 22, 28154-28162(2014).

    [72] Yao B C, Wu Y, Zhang A Q et al. Graphene based surface plasmonics in microfiber multimode interferometer for gas sensing. [C]∥Advanced Photonics, July 27-31, 2014, Barcelona Spain 2014. Washington, D. C.: OSA, SeW2C, 4(2014).

    [73] Yao B C, Rao Y J, Wang Z N et al. Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers[J]. Scientific Reports, 5, 18526(2016).

    [74] Yao B C, Rao Y J, Wang Z N et al. Broadly-tunable pulse generation in cavity-free graphene random fiber lasers. [C]∥Conference on Lasers and Electro-Optics, June 5-10, 2016, San Jose, California, United States. Washington, D. C.: OSA, FM3D, 5(2016).

    [75] Li L, Feng Z Y, Qiao X G et al. Ultrahigh sensitive temperature sensor based on Fabry-Perot interference assisted by a graphene diaphragm[J]. IEEE Sensors Journal, 15, 505-509(2015).

    [76] Zhang J, Liao G Z, Jin S S et al. All-fiber-optic temperature sensor based on reduced graphene oxide[J]. Laser Physics Letters, 11, 035901(2014).

    [77] Li C, Liu Q W, Peng X B et al. Analyzing the temperature sensitivity of Fabry-Perot sensor using multilayer graphene diaphragm[J]. Optics Express, 23, 27494-27502(2015).

    [78] Lin W W. Fiber-optic current sensor[J]. Optical Engineering, 42, 896-897(2003).

    [79] Ning Y N, Wang Z P, Palmer A W et al. Recent progress in optical current sensing techniques[J]. Review of Scientific Instruments, 66, 3097-3111(1995).

    [80] Zheng B C, Yan S C, Xu F et al. High-sensitivity optical fiber current sensor based on suspended graphene membrane. [C]∥International Photonics and OptoElectronics, June 16-19, 2015, Wuhan, China. Washington, D. C.: OSA, OT3B, 6(2015).

    [81] Zheng B C, Yan S C, Chen J H et al. Miniature optical fiber current sensor based on a graphene membrane[J]. Laser & Photonics Reviews, 9, 517-522(2015).

    [82] Yan S C, Zheng B C, Xu F et al. A microfiber-graphene-integrated microresonator for current sensing. [C]∥International Photonics and Opto Electronics, June 16-19, 2015, Wuhan, China. Washington, D. C.: OSA, OW2C, 1(2015).

    [83] Yan S C, Zheng B C, Chen J H et al. Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator[J]. Applied Physics Letters, 107, 053502(2015).

    [84] Tan Y C, Tou Z Q, Chow K K et al. Graphene-deposited photonic crystal fibers for continuous refractive index sensing applications[J]. Optics Express, 23, 31286-31294(2015).

    [85] Huang M, Gu C S, Sun B et al. Refractive index sensor based on tilted-fiber Bragg grating coated with graphene[J]. Chinese Journal of Lasers, 44, 1210001(2017).

    [86] Zheng B C, Xu F. A compact fiber magnetic sensor based on graphene NEMS. [C]∥Asia Communications and Photonics Conference 2015, November 19-23, 2015, HongKong, China Washington, D. C.: OSA, AM4A, 3(2015).

    [87] Liu Z Y, Yan S C, Lu Z D et al. A fiber-optic magnetometer based on graphene NEMS using superparamagnetic nanoparticles. [C]∥CLEO Pacific Rim Conference, July 29-August 3, 2018, HongKong, China. Washington, D. C.: OSA, W2A, 76(2018).

    [88] Liu Z Y, Cao H Q, Xu F. Fiber-optic Lorentz force magnetometer based on a gold-graphene composite membrane[J]. Applied Physics Letters, 112, 203504(2018).

    [89] Ma J, Jin W, Ho H L. A fiber-tip Fabry-Perot pressure sensor with graphene diaphragm[J]. Proceedings of SPIE, 8421, 84211C(2012).

    [90] Dong N N, Wang S M, Jiang L et al. Pressure and temperature sensor based on graphene diaphragm and fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 30, 431-434(2018).

    [91] Ge Y X, Zhang P, Zhao W J. Design of micro-pressure sensor based on graphene diaphragm[J]. Semiconductor Optoelectronics, 39, 37-41(2018).

    [92] Zhao Y, Li X G, Zhou X et al. Review on the graphene based optical fiber chemical and biological sensors[J]. Sensors and Actuators B: Chemical, 231, 324-340(2016).

    [93] Hernaez M, Zamarreño C, Melendi-Espina S et al. Optical fibre sensors using graphene-based materials: a review[J]. Sensors, 17, 155(2017).

    [94] Shivananju B N, Yu W Z, Liu Y et al. The roadmap of graphene-based optical biochemical sensors[J]. Advanced Functional Materials, 27, 1603918(2017).

    [95] Peng X L, Li B, Li Y L. Research progress of refractive index and concentration sensors based on micro-nanofiber Bragg grating[J]. Laser & Optoelectronics Progress, 55, 120010(2018).

    [96] Wu Y, Yao B C, Zhang A Q et al. Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing[J]. Optics Letters, 39, 6030-6033(2014).

    [97] Wu Y, Yao B C, Zhang A Q et al. Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing[J]. Optics Letters, 39, 1235-1237(2014).

    [98] Sridevi S, Vasu K S, Bhat N et al. Ultra sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings[J]. Sensors and Actuators B: Chemical, 223, 481-486(2016).

    [99] Zhang A Q, Wu Y, Yao B C et al. Optimization study on graphene-coated microfiber Bragg grating structures for ammonia gas sensing[J]. Photonic Sensors, 5, 84-90(2015). http://www.opticsjournal.net/Articles/Abstract?aid=OJ150120000029UqXtZw

    [100] Sun Q Z, Luo H P, Luo H B et al. Multimode microfiber interferometer for dual-parameters sensing assisted by Fresnel reflection[J]. Optics Express, 23, 12777-12783(2015).

    [101] Mishra S K, Tripathi S N, Choudhary V et al. SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization[J]. Sensors and Actuators B: Chemical, 199, 190-200(2014).

    [102] Yu C B, Wu Y, Liu X L et al. Graphene oxide deposited microfiber knot resonator for gas sensing[J]. Optical Materials Express, 6, 727-733(2016).

    [103] Yao B C, Yu C B, Wu Y et al. Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection[J]. Nano Letters, 17, 4996-5002(2017).

    [104] Lehner P, Staudinger C, Borisov S M et al. Ultra-sensitive optical oxygen sensors for characterization of nearly anoxic systems[J]. Nature Communications, 5, 4460(2014).

    [105] Jin W, Cao Y C, Yang F et al. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range[J]. Nature Communications, 6, 6767(2015).

    [106] Girei S H, Shabaneh A A, Ngee-Lim H et al. Tapered optical fiber coated with graphene based nanomaterials for measurement of ethanol concentrations in water[J]. Optical Review, 22, 385-392(2015).

    [107] Yao B C, Wu Y, Webb D J et al. Graphene-based D-shaped polymer FBG for highly sensitive erythrocyte detection. [C]∥Frontiers in Optics 2015, October 18-22, 2015, San Jose, California, United States. Washington, D. C.: OSA, FTh2E, 3(2015).

    [108] Sridevi S, Vasu K S, Asokan S et al. Sensitive detection of C-reactive protein using optical fiber Bragg gratings[J]. Biosensors and Bioelectronics, 65, 251-256(2015).

    [109] Xiao Y, Zhang J, Cai X et al. Fiber-optic humidity sensing based on graphene[J]. Acta Optica Sinica, 35, 0406005(2015).

    [110] Gao R, Lu D F, Cheng J et al. Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide[J]. Sensors and Actuators B: Chemical, 222, 618-624(2016).

    [111] Fu H Y, Zhang S W, Chen H et al. Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor[J]. IEEE Sensors Journal, 15, 5478-5482(2015).

    [112] Dash J N, Jha R. On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance[J]. Plasmonics, 10, 1123-1131(2015).

    [113] Kim J A, Hwang T, Dugasani S R et al. Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications[J]. Sensors and Actuators B: Chemical, 187, 426-433(2013).

    [114] Dash J N, Jha R. Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance[J]. IEEE Photonics Technology Letters, 26, 1092-1095(2014).

    [115] Zhang N M Y, Li K W, Shum P P et al. . Graphene enhanced surface plasmon resonance fiber-optic biosensor. [C]∥Conference on Lasers and Electro-Optics, June 5-10, 2016, San Jose, California, United States. Washington, D. C.: OSA, SM4P, 4(2016).

    [116] Rifat A A, Mahdiraji G A, Ahmed R et al. Copper-graphene-based photonic crystal fiber plasmonic biosensor[J]. IEEE Photonics Journal, 8, 4800408(2016).

    [117] Paul A K, Sarkar A K. Razzak S M A. Graphene coated photonic crystal fiber biosensor based on surface plasmon resonance. [C]∥2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), December 21-23, 2017. Dhaka, Bangladesh. New York: IEEE, 856-859(2017).

    [118] Wang F M, Sun Z J, Liu C et al. A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer[J]. Plasmonics, 12, 1847-1853(2017).

    [119] Tong K, Wang F C, Wang M T et al. D-shaped photonic crystal fiber biosensor based on silver-graphene[J]. Optik, 168, 467-474(2018).

    [120] Svelto O, Hanna D C[M]. Principles of lasers(1998).

    [121] Keller U, Weingarten K J, Kartner F X et al. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2, 435-453(1996).

    [122] Popa D, Sun Z, Torrisi F et al. Sub 200 fs pulse generation from a graphene mode-locked fiber laser[J]. Applied Physics Letters, 97, 203106(2010).

    [123] Popa D, Sun Z, Hasan T et al. Graphene Q-switched, tunable fiber laser[J]. Applied Physics Letters, 98, 073106(2011).

    [124] Zhang H, Tang D Y, Knize R J et al. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser[J]. Applied Physics Letters, 96, 111112(2010).

    [125] Liu Z B, He X Y, Wang D N. Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution[J]. Optics Letters, 36, 3024-3026(2011).

    [126] Cui Y D, Liu X M. Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons[J]. Optics Express, 21, 18969-18974(2013).

    [127] Fu B, Hua Y, Xiao X S et al. Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 411-415(2014).

    [128] Zhu G W, Zhu X S, Wang F Q et al. Graphene mode-locked fiber laser at 2.8 μm[J]. IEEE Photonics Technology Letters, 28, 7-10(2016).

    [129] Wang X F, Zhang J H, Gao Z Y et al. Nanosecond mode-locked Tm-doped fiber laser based on graphene saturable absorber[J]. Acta Physica Sinica, 66, 114209(2017).

    [130] Zapata J D, Steinberg D. Saito L A M, et al. Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation[J]. Scientific Reports, 6, 20644(2016).

    [131] Zhao N, Liu M, Liu H et al. Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber[J]. Optics Express, 22, 10906-10913(2014).

    [132] Liu X M, Yang H R, Cui Y D et al. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers[J]. Scientific Reports, 6, 26024(2016).

    [133] Wang X F, Zhang J H, Peng X L et al. Generation and evolution of multiple operation states in passively mode-locked thulium-doped fiber laser by using a graphene-covered-microfiber[J]. Chinese Physics B, 27, 084215(2018).

    [134] Luo Z Q, Zhou M, Weng J et al. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser[J]. Optics Letters, 35, 3709-3711(2010).

    [135] Tang Y L, Yu X C, Li X H et al. High-power thulium fiber laser Q switched with single-layer graphene[J]. Optics Letters, 39, 614-617(2014).

    [136] Choudhary A, Beecher S J, Dhingra S et al. 456-mW graphene Q-switched Yb∶yttria waveguide laser by evanescent-field interaction[J]. Optics Letters, 40, 1912-1915(2015).

    [137] Liu S J, Zhu X S, Zhu G W et al. Graphene Q-switched Ho 3+-doped ZBLAN fiber laser at 1190 nm [J]. Optics Letters, 40, 147-150(2015).

    [138] Huang B, Yi J, Du L et al. Graphene Q-switched vectorial fiber laser with switchable polarized output[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 26-32(2017).

    [139] Yao B C, Rao Y J, Huang S W et al. Graphene Q-switched distributed feedback fiber lasers with narrow linewidth approaching the transform limit[J]. Optics Express, 25, 8202-8211(2017).

    [140] Li D, Xue H, Qi M et al. Graphene actively Q-switched lasers[J]. 2D Materials, 4, 025095(2017).

    [141] Li D, Xue H, Wang Y D et al. Active synchronization and modulation of fiber lasers with a graphene electro-optic modulator[J]. Optics Letters, 43, 3497-3500(2018).

    [142] Chen J H, Zheng B C, Shao G H et al. An all-optical modulator based on a stereo graphene-microfiber structure[J]. Light: Science & Applications, 4, e360(2015).

    [143] Feng Q Y, Yao B C, Zhou J H et al. Four-wave-mixing generated by femto-second laser pumping based on graphene coated microfiber structure[J]. Acta Physica Sinica, 64, 184214(2015).

    [144] Gan X T, Zhao C Y, Wang Y D et al. Graphene-assisted all-fiber phase shifter and switching[J]. Optica, 2, 468-471(2015).

    [145] Yang C H, Wang L, Chen Y Y et al. Optical absorption property of graphene PN junction modulated by voltage in terahertz region[J]. Laser & Optoelectronics Progress, 54, 112601(2017).

    [146] Zhang J, Peng B, Özdemir Ş K et al. A phonon laser operating at an exceptional point[J]. Nature Photonics, 12, 479-484(2018).

    [147] Chen W J, Özdemir Ş K, Zhao G M et al. Exceptional points enhance sensing in an optical microcavity[J]. Nature, 548, 192-196(2017).

    [148] Bi W H, Ma J Y, Yang K L et al. Graphene-based optical fiber and its applications[J]. Laser & Optoelectronics Progress, 54, 040002(2017).

    Teng Tan, Zhongye Yuan, Yuanfu Chen, Baicheng Yao. Graphene-Based Fiber Functional Sensors and Laser Devices[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170613
    Download Citation