• Acta Optica Sinica
  • Vol. 42, Issue 23, 2327002 (2022)
Jingyu Wang1、*, Min Nie1, Guang Yang1, Meiling Zhang1, Aijing Sun1, and Changxing Pei2
Author Affiliations
  • 1School of Communications and Information Engineering, Xi′an University of Posts & Telecommunications, Xi′an710121, Shaanxi , China
  • 2State Key Laboratory of Integrated Services Networks, Xidian University, Xi′an710071, Shaanxi , China
  • show less
    DOI: 10.3788/AOS202242.2327002 Cite this Article Set citation alerts
    Jingyu Wang, Min Nie, Guang Yang, Meiling Zhang, Aijing Sun, Changxing Pei. Thermal Noise Suppression Strategy for Dual-Cavity Mechanical Quantum Gyroscope[J]. Acta Optica Sinica, 2022, 42(23): 2327002 Copy Citation Text show less
    Schematic of a dual-cavity optomechanical quantum gyroscope
    Fig. 1. Schematic of a dual-cavity optomechanical quantum gyroscope
    Variation of noise proportion with laser field intensity a¯0(effective detuning of optical cavity:Δ1'=0,Δ2=-ωm; cavity decay rate: k1=5ωm,k2=0.3ωm; phonon number: n=312; mechanical oscillator decay rate: γ=8×10-4ωm; optical cavity coupling intensity: J=2ωm)
    Fig. 2. Variation of noise proportion with laser field intensity a¯0(effective detuning of optical cavity:Δ1'=0,Δ2=-ωm; cavity decay rate: k1=5ωm,k2=0.3ωm; phonon number: n=312; mechanical oscillator decay rate: γ=8×10-4ωm; optical cavity coupling intensity: J=2ωm)
    Schematic of phonon state transition of mechanical resonator
    Fig. 3. Schematic of phonon state transition of mechanical resonator
    Radiation pressure fluctuation spectra SFF(ω) under different optical cavity coupling intensities J (effective detuning of optical cavity:Δ1'=ωm,Δ2=-ωm; cavity decay rate: k1=3ωm, k2=0.3ωm)
    Fig. 4. Radiation pressure fluctuation spectra SFF(ω) under different optical cavity coupling intensities J (effective detuning of optical cavity:Δ1'=ωm,Δ2=-ωm; cavity decay rate: k1=3ωm, k2=0.3ωm)
    Radiation pressure fluctuation spectra SFF(ω) under different auxiliary cavity detuning Δ2 (effective detuning of optical cavity:Δ1'=ωm; cavity decay rate:k1=3ωm,k2=0.3ωm; optical cavity coupling intensity: J=2ωm)
    Fig. 5. Radiation pressure fluctuation spectra SFF(ω) under different auxiliary cavity detuning Δ2 (effective detuning of optical cavity:Δ1'=ωm; cavity decay rate:k1=3ωm,k2=0.3ωm; optical cavity coupling intensity: J=2ωm)
    Radiation pressure fluctuation spectra SFF(ω) under different optical cavity detuning Δ1' (effective detuning of the auxiliary cavity: Δ2=-ωm; optical cavity coupling intensity: J=2ωm(ωm-Δ1'); cavity decay rate: k1=3ωm, k2=0.3ωm)
    Fig. 6. Radiation pressure fluctuation spectra SFF(ω) under different optical cavity detuning Δ1' (effective detuning of the auxiliary cavity: Δ2=-ωm; optical cavity coupling intensity: J=2ωm(ωm-Δ1'); cavity decay rate: k1=3ωm, k2=0.3ωm)
    Radiation pressure fluctuation spectra SFF(ω) under different decay rates of auxiliary optical cavities k2 when cavity decay rate k1=3ωm and optical cavity coupling intensity J=2ωm(ωm-Δ1'). (a) Effective detuning of optical cavity Δ1'=-2ωm and Δ2=-ωm; (b) effective detuning of optical cavity Δ1'=0, Δ2=-ωm
    Fig. 7. Radiation pressure fluctuation spectra SFF(ω) under different decay rates of auxiliary optical cavities k2 when cavity decay rate k1=3ωm and optical cavity coupling intensity J=2ωm(ωm-Δ1'). (a) Effective detuning of optical cavity Δ1'=-2ωm and Δ2=-ωm; (b) effective detuning of optical cavity Δ1'=0, Δ2=-ωm
    Cooling effect of scheme I under different decay rates of auxiliary optical cavities when effective detuning of optical cavity Δ2=ωm-J2/ωm. (a) Variation of cooling rate with optical cavity coupling intensity J; (b) variations of cooling limit nc and the final mean phonon number of the mechanical resonator nf with optical cavity coupling intensity J
    Fig. 8. Cooling effect of scheme I under different decay rates of auxiliary optical cavities when effective detuning of optical cavity Δ2=ωm-J2/ωm. (a) Variation of cooling rate with optical cavity coupling intensity J; (b) variations of cooling limit nc and the final mean phonon number of the mechanical resonator nf with optical cavity coupling intensity J
    Comparison of cooling effects of scheme 1 [SFF(ωm) maximum, Δ1'=0, Δ2=ωm-J2/ωm, k1=3ωm, k2=0.05ωm] and scheme 2 [SFF(-ωm) minimum,Δ1'=0, Δ2=ωm-J/ωm, k1=3ωm, k2=0.05ωm]. (a) Variation of cooling rate with optical cavity coupling intensity J; (b) variations of cooling limit nc and the final mean phonon number of mechanical resonator nf with optical cavity coupling intensity J
    Fig. 9. Comparison of cooling effects of scheme 1 [SFF(ωm) maximum, Δ1'=0, Δ2=ωm-J2/ωm, k1=3ωm, k2=0.05ωm] and scheme 2 [SFF(-ωm) minimum,Δ1'=0, Δ2=ωm-J/ωm, k1=3ωm, k2=0.05ωm]. (a) Variation of cooling rate with optical cavity coupling intensity J; (b) variations of cooling limit nc and the final mean phonon number of mechanical resonator nf with optical cavity coupling intensity J
    Comparison of radiation pressure fluctuation spectra between original model (coupling strength J=0) and optimized dual-cavity model (coupling strength J=2ωm). Effective detuning of optical cavity: Δ1'=0,Δ2=-ωm; cavity decay rate: k1=3ωm, k2=0.05ωm
    Fig. 10. Comparison of radiation pressure fluctuation spectra between original model (coupling strength J=0) and optimized dual-cavity model (coupling strength J=2ωm). Effective detuning of optical cavity: Δ1'=0,Δ2=-ωm; cavity decay rate: k1=3ωm, k2=0.05ωm
    Jingyu Wang, Min Nie, Guang Yang, Meiling Zhang, Aijing Sun, Changxing Pei. Thermal Noise Suppression Strategy for Dual-Cavity Mechanical Quantum Gyroscope[J]. Acta Optica Sinica, 2022, 42(23): 2327002
    Download Citation