• Acta Optica Sinica
  • Vol. 42, Issue 1, 0112004 (2022)
Wei Chong1、2, Wenhua Lü1、2、*, Jian Zhang1、3、4, Jing Liang1, Xiaotong Yang1, Shi Liu1、3、4, Guoyu Zhang1、3、4, and Kesan Yang5
Author Affiliations
  • 1School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • 2Meteorological Observation Center of China Meteorological Administration, Beijing 100081, China
  • 3Key Laboratory of Opto-Electronic Measurement and Optical Information Transmission Technology, Ministry of Education, Changchun, Jilin 130022, China
  • 4Jilin Engineering Research Center of Photoelectronic Measurement & Control Instruments, Changchun, Jilin 130022, China;
  • 5Aerospace Newsky Technology Co. Ltd., Wuxi, Jiangsu 214127, China
  • show less
    DOI: 10.3788/AOS202242.0112004 Cite this Article Set citation alerts
    Wei Chong, Wenhua Lü, Jian Zhang, Jing Liang, Xiaotong Yang, Shi Liu, Guoyu Zhang, Kesan Yang. Calibration System of Sunshine Duration Recorder Based on Bi-Xenon Lamp Source Integrating Sphere[J]. Acta Optica Sinica, 2022, 42(1): 0112004 Copy Citation Text show less
    Typical structure of rotating pyroelectric sunshine duration recorder
    Fig. 1. Typical structure of rotating pyroelectric sunshine duration recorder
    Structural diagram of bi-xenon lamp source integrating sphere calibration system of RPSDR
    Fig. 2. Structural diagram of bi-xenon lamp source integrating sphere calibration system of RPSDR
    General structure diagram of solar simulator
    Fig. 3. General structure diagram of solar simulator
    Design curve of spectral transmittance of coating film
    Fig. 4. Design curve of spectral transmittance of coating film
    Diagram of test points of irradiance uniformity on effective irradiation surface
    Fig. 5. Diagram of test points of irradiance uniformity on effective irradiation surface
    Irradiance distribution of uniformity test points
    Fig. 6. Irradiance distribution of uniformity test points
    Stability test for effective irradiation surface
    Fig. 7. Stability test for effective irradiation surface
    Variation curve of irradiance at threshold point within 1 h
    Fig. 8. Variation curve of irradiance at threshold point within 1 h
    Threshold calibrating test
    Fig. 9. Threshold calibrating test
    Wave band /nmRatio of spectral irradiance toglobal irradiance in 400--1100 nm /%Ratio of energy between uncorrectedxenon lamp and AM1.5
    Uncorrected xenon lampAM1.5
    400--50017.199618.50.9297
    500--60013.583520.10.6758
    600--70010.913118.30.5963
    700--80010.365114.80.7003
    800--90013.562612.21.1117
    900--110034.376116.12.1352
    Table 1. Solar spectral energy distribution data of uncorrected xenon lamp and AM1.5 of class A
    Wave band /nmRatio of spectral irradiance toglobal irradiance in 400--1100 nmEnergy ratio ofcorrected xenonlamp to AM1.5Matchingcondition
    Corrected xenon lampAM1.5
    400--50019.7218.51.066Yes
    500--60018.6920.10.930Yes
    600--70017.8918.30.978Yes
    700--80016.3114.81.102Yes
    800--90012.3712.21.014Yes
    900--110015.0216.10.933Yes
    Table 2. Energy distributions of corrected xenon lamp spectrum and AM1.5 class A solar spectrum
    Serial numberBefore calibrationAfter calibration
    StandardthresholdUncalibratedthresholdDeviationStandardthresholdCalibratedthresholdDeviation
    1121.8129.98.1121.3121.60.3
    2121.6130.38.7121.1121.70.6
    3122.1130.38.2121.1121.60.5
    4121.9130.38.4121.3121.90.6
    5121.4130.59.1120.9121.40.5
    6121.5130.18.6121.3121.30.0
    7121.7130.58.8121.6121.5-0.1
    8121.7129.67.9121.4121.50.1
    9121.9130.08.1121.4121.80.4
    10122.0129.97.9121.2121.40.2
    Mean121.8130.18.3121.3121.60.3
    Standard error0.20.30.40.20.20.3
    Table 3. Comparison of mean deviation and standard deviation of calibrated threshold and standard threshold before and after calibrationW·m-2
    TimeThreshold measured bystandard RPSDRThreshold measured byuncalibrated RPSDRDeviation
    2020-06-13T19:25:20124.3135.711.4
    2020-06-13T19:25:30122.1131.19.0
    2020-06-13T19:25:40119.7129.69.9
    2020-06-13T19:25:50115.2123.48.2
    Mean120.3129.29.6
    Standard error4.46.51.6
    TimeThreshold measured bystandard RPSDRThreshold measured byuncalibrated RPSDRDeviation
    2020-06-14T06:13:10116.4126.39.9
    2020-06-14T06:13:20119.6130.410.8
    2020-06-14T06:13:30123.9134.110.2
    Mean120.0130.310.3
    Standard error4.44.60.5
    TimeThreshold measured bystandard RPSDRThreshold measured byuncalibrated RPSDRDeviation
    2020-06-14T19:26:30124.8134.39.5
    2020-06-14T19:26:30123.0132.99.9
    2020-06-14T19:26:30121.8130.58.7
    2020-06-14T19:26:30118.4127.69.2
    Mean122.0131.39.3
    Standard error3.13.30.6
    TimeThreshold measured bystandard RPSDRThreshold measured byuncalibrated RPSDRDeviation
    2020-06-15T11:05:50123.5134.110.6
    2020-06-15T11:06:00124.9135.810.9
    2020-06-15T11:06:10120.7129.99.2
    2020-06-15T11:06:20119.0127.38.3
    2020-06-15T11:06:30116.3125.49.1
    Mean120.9130.59.6
    Standard error3.74.51.1
    Table 4. Test data of threshold comparisonW·m-2
    DateSunshine duration measured bystandard pyrheliometer /hSunshine durationmeasured by RPSDR /hAbsoluteerror /hRelativeerror /%
    2020-07-225.505.760.264.7
    2020-07-2311.5011.610.111.0
    2020-07-249.049.080.040.4
    2020-07-252.792.980.196.8
    Table 5. Comparison of test data of sunshine duration
    Wei Chong, Wenhua Lü, Jian Zhang, Jing Liang, Xiaotong Yang, Shi Liu, Guoyu Zhang, Kesan Yang. Calibration System of Sunshine Duration Recorder Based on Bi-Xenon Lamp Source Integrating Sphere[J]. Acta Optica Sinica, 2022, 42(1): 0112004
    Download Citation