Yunqiang Zheng1,2, Huan Liu1,2,*, Jiacheng Meng1,2, Yufei Wang1,2..., Wenchao Nie1,2, Junxia Wu1,2, Tingting Yu1,2, Sentao Wei1,2, Zhanchao Yuan1,2, Wei Wang1,2 and Xiaoping Xie1,2|Show fewer author(s)
Author Affiliations
1Laboratory of Photonics and Network, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China2State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, Chinashow less
DOI: 10.3788/IRLA20210475
Cite this Article
Yunqiang Zheng, Huan Liu, Jiacheng Meng, Yufei Wang, Wenchao Nie, Junxia Wu, Tingting Yu, Sentao Wei, Zhanchao Yuan, Wei Wang, Xiaoping Xie. Development status, trend and key technologies of air-based laser communication[J]. Infrared and Laser Engineering, 2022, 51(6): 20210475
Copy Citation Text
show less
Fig. 1. Overall framework of the ORCA system
Fig. 2. Compensation effect with and without AO
Fig. 3. Overview chart of FOENEX
Fig. 4. FOENEX link ground station node(shown are the two lasercom and one RF terminals)
Fig. 5. FOENEX link aircraft node. There are two lasercom terminals, one overwing and one beneath the aircraft nose
Fig. 6. Data showing link configuration and ranges of the four-node hybrid FSO/RF network
Fig. 7. Floating platform and laser communication terminal (Loon)
Fig. 8. Topology of laser communication of the Aquila UAV-UAV and the UAV-ground
Fig. 9. Diagram of Aquila airborne terminal physical and payload
[26] Fig. 10. Laser link and terminal physicial between GEO-aircraft(LOLA)
Fig. 11. The terminal on the aircraft(ARGO)
Fig. 12. Laser terminal on the ground station(ARGO)
Fig. 13. System overview of the DoD fast laser communication system
Fig. 14. System diagram of laser communication based on Ultra Air project
Fig. 15. Sky network system of Airbus
Type | Project | Organization | Year | Platform | Communication rate | Distance/km | Others | Air-ground | HAVE LACE
| AFRL/SN | 1980 | KC-135
Airplane
| 19.2 bps (uplink)/
1 Gbps (downlink)
| 100 | 532 nm/1064 nm | AFRL/SN | 1983 | KC-135
Airplane
| 19.2 bps (uplink)/
1 Gbps (downlink)
| 160 | | AFRL/SN | 1996 | T-39 Fighter | 1 Gbps | 30 | | OCD-2 | NASA/JPL | 2005 | UAV | 2.5 Gbps | 50 | 1550 nm, 67 kg, 650 W | STROPEX | DLR/Vialight | 2005 | H-A-P (stratospheric) | 1.25 Gbps | 64.15 | OOK, 1550 nm,
17.54 kg, 75 W
| FOCAL | MIT/LL | 2009 | Twin Otter Aircraft | 2.66 Gbps | 25 | OOK | ARGOS | DLR/Vialight | 2010 | Do-228 Aircraft | 1.25 Gbps | 100 | OOK, 1550 nm/1590 nm | FOENEX | DARPA | 2012 | Aircraft | 8.5 Gbps | 130 | 52.2 kg | DoD fast | DLR/Vialight | 2013 | Tornado Fighter | 1.25 Gbps | 50 | OOK, 5 kg | Facebook | Facebook&Mynaric | 2017 | Cessna310 Aircraft | 10 Gbps | 9 | | Air-air | HAVE LACE | AFRL/SN | 1998 | T-39 Fighter | 1 Gbps | 500 | | ORCA | DARPA | 2009 | Aircraft | 5 Gbps | 200 | OOK, 1550 nm | FALCON | AFRL | 2010 | DC-3 Aircraft | 2.5 Gbps | 132 | OOK, 1545 nm /1555 nm | FOENEX | DARPA | 2012 | Aircraft | 6 Gbps | 230 | 52.2 kg | Loon | Google | 2015 | H-A-P (stratospheric) | 130 Mpbs | 100 | OOK, 1550.12 nm/
1556.50 nm, 6.3 kg, 20 W
| Aquila | Facebook | 2016 | Aquila UAV | 100 Gbps | 250 | QPSK, 1562 nm/
1542 nm, 5 kg, 150 W
| Air-GEO | LOLA | DGA | 2006 | Falcon20 Fighter | 2 Mbps (uplink)/
50 Mbps (downlink)
| 36000 | 848 nm | ALCoS | NASA/GA-ASI | 2021 | MQ-9 RPA UAV | 1.8 Gbps | 36000 | 1064 nm, 1550 nm | ScyLigh | ESA | 2022 | Airbus Aircraft | 1.8 Gbps | 36000 | |
|
Table 1. Major air-based laser communication programs in united space and europe