• Photonics Research
  • Vol. 10, Issue 7, 1777 (2022)
Boyu Gu1、2、3 and Yuhua Zhang1、2、*
Author Affiliations
  • 1Doheny Eye Institute, Pasadena, California 91103, USA
  • 2Department of Ophthalmology, University of California - Los Angeles, Los Angeles, California 90095, USA
  • 3Currently at School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin 300384, China
  • show less
    DOI: 10.1364/PRJ.452364 Cite this Article Set citation alerts
    Boyu Gu, Yuhua Zhang. Adaptive optics wavefront correction using a damped transpose matrix of the influence function[J]. Photonics Research, 2022, 10(7): 1777 Copy Citation Text show less
    References

    [1] H. W. Babcock. The possibility of compensating astronomical seeing. Publ. Astron. Soc. Pac., 65, 229-236(1953).

    [2] J. Liang, D. R. Williams, D. T. Miller. Supernormal vision and high-resolution retinal imaging through adaptive optics. J. Opt. Soc. Am. A, 14, 2884-2892(1997).

    [3] A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, M. Campbell. Adaptive optics scanning laser ophthalmoscopy. Opt. Express, 10, 405-412(2002).

    [4] R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, J. S. Werner. Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Opt. Express, 13, 8532-8546(2005).

    [5] Y. Zhang, J. Rha, R. Jonnal, D. Miller. Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. Opt. Express, 13, 4792-4811(2005).

    [6] S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, L. C. Sincich. Vision science and adaptive optics, the state of the field. Vision Res., 132, 3-33(2017).

    [7] J. Porter, H. Queener, J. Lin, K. Thorn, A. A. S. Awwal. Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications(2006).

    [8] F. Roddier. Adaptive Optics in Astronomy(1999).

    [9] R. K. Tyson. Principles of Adaptive Optics(2010).

    [10] M. J. Booth. Wavefront sensorless adaptive optics for large aberrations. Opt. Lett., 32, 5-7(2007).

    [11] H. Hofer, N. Sredar, H. Queener, C. Li, J. Porter. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye. Opt. Express, 19, 14160-14171(2011).

    [12] Y. Jian, J. Xu, M. A. Gradowski, S. Bonora, R. J. Zawadzki, M. V. Sarunic. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice. Biomed. Opt. Express, 5, 547-559(2014).

    [13] K. F. Tehrani, J. Xu, Y. Zhang, P. Shen, P. Kner. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) using a genetic algorithm. Opt. Express, 23, 13677-13692(2015).

    [14] S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, S. A. Boppart. Computational adaptive optics for broadband optical interferometric tomography of biological tissue. Proc. Natl. Acad. Sci. USA, 109, 7175-7180(2012).

    [15] H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams. Dynamics of the eye’s wave aberration. J. Opt. Soc. Am. A, 18, 497-506(2001).

    [16] H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, D. R. Williams. Improvement in retinal image quality with dynamic correction of the eye’s aberrations. Opt. Express, 8, 631-643(2001).

    [17] T. Nirmaier, G. Pudasaini, J. Bille. Very fast wave-front measurements at the human eye with a custom CMOS-based Hartmann-Shack sensor. Opt. Express, 11, 2704-2716(2003).

    [18] L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, C. Dainty. Benefit of higher closed-loop bandwidths in ocular adaptive optics. Opt. Express, 11, 2597-2605(2003).

    [19] A. Mira-Agudelo, L. Lundstrom, P. Artal. Temporal dynamics of ocular aberrations: monocular vs binocular vision. Ophthalmic Physiol. Opt., 29, 256-263(2009).

    [20] Y. Yu, T. Zhang, A. Meadway, X. Wang, Y. Zhang. High-speed adaptive optics for imaging of the living human eye. Opt. Express, 23, 23035-23052(2015).

    [21] E. Gofas-Salas, P. Mece, C. Petit, J. Jarosz, L. M. Mugnier, A. Montmerle Bonnefois, K. Grieve, J. Sahel, M. Paques, S. Meimon. High loop rate adaptive optics flood illumination ophthalmoscope with structured illumination capability. Appl. Opt., 57, 5635-5642(2018).

    [22] K. Y. Li, S. Mishra, P. Tiruveedhula, A. Roorda. Comparison of control algorithms for a MEMS-based adaptive optics scanning laser ophthalmoscope. Proceedings American Control Conference, 3848-3853(2009).

    [23] A. Ben-Israel, T. N. E. Greville. Generalized Inverses: Theory and Applications, 420(2003).

    [24] D. L. Fried. Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements. J. Opt. Soc. Am., 67, 370-375(1977).

    [25] R. H. Hudgin. Wave-front reconstruction for compensated imaging. J. Opt. Soc. Am., 67, 375-378(1977).

    [26] J. W. Hardy. Adaptive Optics for Astronomical Telescopes(1998).

    [27] W. Zou, X. Qi, S. A. Burns. Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm. Biomed. Opt. Express, 2, 1986-2004(2011).

    [28] W. Zou, X. Qi, G. Huang, S. A. Burns. Improving wavefront boundary condition for in vivo high resolution adaptive optics ophthalmic imaging. Biomed. Opt. Express, 2, 3309-3320(2011).

    [29] P. C. Hansen. The truncated SVD as a method for regularization. BIT Numer. Math., 27, 534-553(1987).

    [30] P. C. Hansen, R. P. Agarwal, Y. M. Chow, S. J. Wilson. Solution of Ill-Posed Problems by Means of Truncated SVD. Numerical Mathematics Singapore 1988, 179-192(1988).

    [31] I. F. Gorodnitsky, B. D. Rao. Analysis of error produced by truncated SVD and Tikhonov regularization methods. Proceedings of 28th Asilomar Conference on Signals, Systems and Computers, 21, 25-29(1994).

    [32] E. Fernandez, P. Artal. Membrane deformable mirror for adaptive optics: performance limits in visual optics. Opt. Express, 11, 1056-1069(2003).

    [33] Y. Zhang, S. Poonja, A. Roorda. MEMS-based adaptive optics scanning laser ophthalmoscopy. Opt. Lett., 31, 1268-1270(2006).

    [34] J. Lu, B. Gu, X. Wang, Y. Zhang. High speed adaptive optics ophthalmoscopy with an anamorphic point spread function. Opt. Express, 26, 14356-14374(2018).

    [35] J. Lu, B. Gu, X. Wang, Y. Zhang. Adaptive optics parallel near-confocal scanning ophthalmoscopy. Opt. Lett., 41, 3852-3855(2016).

    [36] J. Lu, B. Gu, X. Wang, Y. Zhang. High-speed adaptive optics line scan confocal retinal imaging for human eye. PLoS ONE, 12, e0169358(2017).

    [37] A. Meadway, C. A. Girkin, Y. Zhang. A dual-modal retinal imaging system with adaptive optics. Opt. Express, 21, 29792-29807(2013).

    [38] W. Zou, S. A. Burns. Testing of Lagrange multiplier damped least-squares control algorithm for woofer-tweeter adaptive optics. Appl. Opt., 51, 1198-1208(2012).

    [39] Y. Yu, Y. Zhang. Dual-thread parallel control strategy for ophthalmic adaptive optics. Chin. Opt. Lett., 12, 121202(2014).

    [40] M. J. Booth. Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci. Appl., 3, e165(2014).

    Boyu Gu, Yuhua Zhang. Adaptive optics wavefront correction using a damped transpose matrix of the influence function[J]. Photonics Research, 2022, 10(7): 1777
    Download Citation