• Journal of Inorganic Materials
  • Vol. 37, Issue 6, 660 (2022)
Meixia XIAO1, Miaomiao LI1, Erhong SONG2、*, Haiyang SONG1、*, Zhao LI1, and Jiaying BI1
Author Affiliations
  • 11. College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
  • 22. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • show less
    DOI: 10.15541/jim20210550 Cite this Article
    Meixia XIAO, Miaomiao LI, Erhong SONG, Haiyang SONG, Zhao LI, Jiaying BI. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(6): 660 Copy Citation Text show less
    References

    [1] K S NOVOSELOV, A K GEIM, S V MOROZOV et al. Electric field effect in atomically thin carbon films. Science, 666-669(2004).

    [2] F ZHANG, L WAN, J CHEN et al. Crossed carbon skeleton enhances the electrochemical performance of porous silicon nanowires for lithium ion battery anode. Electrochimica Acta, 86-93(2018).

    [3] Y JIN, B ZHU, Z LU et al. Challenges and recent progress in the development of Si anodes for lithium-ion battery. Advanced Energy Materials, 1700715(2017).

    [4] A Y KOZMENKOVA, V A TIMOFEEVA, B N MANKAEV et al. The redox properties of germylenes stabilized by N-donor ligands. European Journal of Inorganic Chemistry, 2755-2763(2021).

    [5] K L ZHANG, F CHEN, H PAN et al. Study on the effect of transition metal sulfide in lithium-sulfur battery. Inorganic Chemistry Frontiers, 477-481(2019).

    [6] J ZHAO, Y ZHANG, Y WANG et al. The application of nanostructured transition metal sulfides as anodes for lithium ion batteries. Journal of Energy Chemistry, 1536-1554(2018).

    [7] M NAGUIB, M KURTOGLU, V PRESSER et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 4248-4253(2011).

    [8] B ANASORI, M R LUKATSKAYA, Y GOGOTSI. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 16098(2017).

    [9] M NAGUIB, V N MOCHALIN, M W BARSOUM et al. 25th anniversary article: MXenes: a new family of two-dimensional materials. Advanced Materials, 992-1005(2014).

    [10] Z LI, L WANG, D SUN et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Materials Science and Engineering: B, 33-40(2015).

    [11] K HANTANASIRISAKUL, M Q ZHAO, P URBANKOWSKI et al. Fabrication of Ti3C2 MXene transparent thin films with tunable optoelectronic properties. Advanced Electronic Materials, 1600050(2016).

    [12] C F ZHANG, B ANASORI, A SERAL-ASCASO et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Advanced Materials, 1702678(2017).

    [13] Z LING, C E REN, M Q ZHAO et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences, 16676-16681(2014).

    [14] M HU, T HU, Z LI et al. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene. ACS Nano, 3578-3586(2018).

    [15] S Q WEI, C D WANG, P J ZHANG et al. Mn2+ intercalated V2C MXene for enhanced sodium ion battery. Journal of Inorganic Materials, 139-144(2020).

    [16] B MA, M LI, L CHENG et al. Enzyme-MXene nanosheets: fabrication and application in electrochemical detection of H2O2. Journal of Inorganic Materials, 131-138(2020).

    [17] G MOSTAFA, Y YADOLLAH, Z M KOBRA. Accordion-like Ti3C2Tx MXene nanosheets as a high-performance solid phase microextraction adsorbent for determination of polycyclic aromatic hydrocarbons using GC-MS. Microchimica Acta, 2145-2148(2020).

    [18] T LI, L HUANG, X YAN et al. Ti3C2Tx/wood carbon as high- areal-capacity electrodes for supercapacitors. Journal of Inorganic Materials, 126-130(2020).

    [19] Y MA, Y LIU, C YU et al. Monolayer Ti3C2Tx nanosheets with different lateral dimension: preparation and electrochemical property. Journal of Inorganic Materials, 93-98(2020).

    [20] Q TANG, Z ZHOU, P SHEN. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. Journal of the American Chemical Society, 16909-16916(2012).

    [21] M LIANG, L ZHI. Graphene-based electrode materials for rechargeable lithium. Journal of Materials Chemistry, 5871-5878(2009).

    [22] X ZHANG, Z ZHANG, Z ZHOU. MXene-based materials for electrochemical energy storage. Journal of Energy Chemistry, 73-85(2017).

    [23] O MASHTALIR, M R LULATSKAYA, M Q ZHAO et al. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Advanced Materials, 3501-3506(2015).

    [24] D LI, X CHEN, P XIANG et al. Chalcogenated-Ti3C2X2 MXene (X=O, S, Se and Te) as a high-performance anode material for Li-ion batteries. Applied Surface Science, 144221(2020).

    [25] Q MENG, J MA, Y ZHANG et al. The S-functionalized Ti3C2 MXene as a high capacity electrode material for Na-ion batteries: a DFT study. Nanoscale, 3385-3392(2018).

    [26] R LI, P ZHAO, X QIN et al. First-principles study of heterostructures of MXene and nitrogen-doped graphene as anode materials for Li-ion batteries. Surfaces and Interfaces, 100788(2020).

    [27] B DELLEY. An all-electron numerical method for solving the local density functional for polyatomic molecules. The Journal of Chemical Physics, 508-517(1990).

    [28] B DELLEY. From molecules to solids with the DMol3 approach. The Journal of Chemical Physics, 7756-7764(2000).

    [29] I E DZYALOSHINSKII, E M LIFSHITZ, L P PITAEVSKII. General theory of van Der Waals’ forces. Soviet Physics Uspekhi, 153-176(1961).

    [30] J P PERDEW, K BURKE, M ERNZERHOF. Generalized gradient approximation made simple. Physical Review Letters, 3865(1996).

    [31] D D KOELLING, B N HARMON. A technique for relativistic spin-polarised calculations. Journal of Physics C: Solid State Physics, 3107(1977).

    [32] J M HENDRIK, D P JAMES. Special points for Brillouin-zone integrations. Physical Review B, 5188-5192(1976).

    [33] Y LI, D WU, Z ZHOU et al. Enhanced Li adsorption and diffusion on MoS2 zigzag nanoribbons by edge effects: a computational study. Physical Review Letters, 2221-2227(2012).

    [34] H ZHANG, X XIN, H LIU et al. Enhancing lithium adsorption and diffusion toward extraordinary lithium storage capability of freestanding Ti3C2Tx MXene. The Journal of Physical Chemistry C, 2792-2800(2019).

    [35] T HU, J WANG, H ZHANG et al. Vibrational properties of Ti3C2 and Ti3C2T2 (T= O, F, OH) monosheets by first-principles calculations: a comparative study. Physical Chemistry Chemical Physics, 9997-10003(2015).

    [36] L LI. Lattice dynamics and electronic structures of Ti3C2O2 and Mo2TiC2O2 (MXenes): the effect of Mo substitution. Computational Materials Science, 8-14(2016).

    [37] D ZHAO, M CLITES, G YING et al. Alkali-induced crumpling of Ti3C2Tx (MXene) to form 3D porous networks for sodium ion storage. Chemical Communications, 4533-4536(2018).

    [38] K ZHANG, G YING, L LIU et al. Three-dimensional porous Ti3C2Tx-NiO composite electrodes with enhanced electro-chemical performance for supercapacitors. Materials, 188(2019).

    [39] Z FU, Q ZHANG, D LEGUT et al. Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide. Physical Review B, 104103(2016).

    [40] K NAKADA, A ISHII. Migration of adatom adsorption on graphene using DFT calculation. Solid State Communications, 13-16(2011).

    [41] B XU, H S LU, B LIU et al. Comparisons between adsorption and diffusion of alkali, alkaline earth metal atoms on silicene and those on silicane: insight from first-principles calculations. Chinese Physics B, 067103(2016).

    [42] G A TRITSARIS, E KAXIRAS, S MENG et al. Adsorption and diffusion of lithium on layered silicon for Li-ion storage. Nano Letters, 2258-2263(2013).

    [43] Y JING, Z ZHOU, C R CABRERA et al. Metallic VS2 monolayer: a promising 2D anode material for lithium ion batteries. The Journal of Physical Chemistry C, 25409-25413(2013).

    [44] Y XIE, Y DALL’AGNESE, M NAGUIB et al. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano, 9606-9615(2014).

    [45] Y XIE, M NAGUIB, V N MOCHALIN et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. Journal of the American Chemical Society, 6385-6394(2014).

    [46] C EAMES, M S ISLAM. Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. Journal of the American Chemical Society, 16270-16276(2014).

    [47] M V KOUDRIACHOVA, N M HARRISON, S W DE LEEUW. Open circuit voltage profile for Li-intercalation in rutile and anatase from first principles. Solid State Ionics, 189-194(2002).

    [48] J HU, B XU, C OUYANG et al. Investigations on Nb2C monolayer as promising anode material for Li or non-Li ion batteries from first-principles calculations. RSC Advances, 27467-27474(2016).

    [49] Q SUN, Y DAI, Y MA et al. Ab initio prediction and characterization of Mo2C monolayer as anodes for lithium-ion and sodium-ion batteries. The Journal of Physical Chemistry Letters, 937-943(2016).

    Meixia XIAO, Miaomiao LI, Erhong SONG, Haiyang SONG, Zhao LI, Jiaying BI. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(6): 660
    Download Citation